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Abstract

Conventional wisdom posits that all the relevant investors’ information lies at the highest possible

frequency of observation, so that long-run expected returns can be mechanically inferred by a forward

aggregation of short-run estimates. We reverse such logic and propose a novel framework to model and

extract the dynamics of latent short-term expected returns by coherently combining the lower-frequency

information embedded in multiple predictors. We show that the information cascade from low- to high-

frequency levels allows to identify long-lasting effects on expected returns that cannot be captured by

standard persistent ARMA processes. The empirical analysis demonstrates that the ability of the model

to capture simultaneously medium- to long-term fluctuations in the dynamics of expected returns has

first order implications for forecasting and investment decisions.

Keywords: Expected Returns, Long-Horizon Predictability, Multi-Scale, Markov Chain Monte Carlo

JEL codes: G17, G11, C53, C58

∗We thank Jaroslav Borovicka, Lars A. Lochstoer (discussant), Frank Schorfheide, Pietro Veronesi, Mike West,
and Stan Zin for their helpful comments and suggestions. We also thank seminar participants at the Stockholm
School of Economics, London School of Economics, USI-Lugano, Nova School of Business and Economics, Warwick
Business School, University of Kent, the 2016 SFS Cavalcade at Rotman School of Management, the 2016 NBER-
NSF Seminar on Bayesian Inference in Econometrics and Statistic at UPenn, and the 9th International Conference
on Computational and Financial Econometrics in London.

†Warwick Business School, University of Warwick, Coventry, UK. Daniele.Bianchi@wbs.ac.uk
‡Department of Finance, London School of Economics, London, UK. A.G.Tamoni@lse.ac.uk

1



1 Introduction

The predictive power of forecasting variables studied in the literature varies with the time hori-

zon. For example, while the dividend-price ratio is known to reveal long-term tendencies in asset

returns, the consumption-wealth ratio shows its highest forecasting power at the intermediate

horizon. As a result, simple predictive regressions support the view that different predictors

have an horizon-specific effect on the investors’ expectations formation process. Nonetheless, to

date, the standard approach to extract expected returns relies on the assumption that all the

relevant investors’ information lies at the highest possible frequency of observation; given this

assumption, it is then typical to specify transitional dynamics for state variables over a short

horizon, and then use forward aggregation to infer the medium- and long-run behavior of future

expected returns.1

In this paper, we propose a novel econometric framework to coherently combine in a unifying

model the scale-specific information from multiple predictors, and we investigate whether the

dominant view that long-term investors’ expectations are the results of an aggregation of short-

term expectations is backed up by the empirical evidence. Equivalently, we ask whether the time

series behavior of long-run expected returns extracted from low-to-mid frequency predictors is

consistent with the long-horizon aggregation of short-run expected returns. Our main result

shows that this is not the case.

Empirically, we show that our model-implied expected return series exhibits aggregation

properties which differs wildly from those obtained within the class of standard ARMA processes

and, in particular, from those of a standard autoregressive process of order one (henceforth

AR(1)). Figure 8 shows this case in point. In Panel A we compare the autocorrelation function

(henceforth ACF) of the monthly expected return series extracted from the joint information

provided by the annual consumption-wealth and a four-year moving average dividend-price

ratio, with the autocorrelation implied by a sum of two independent AR(1) processes fitted to

short-run returns. Although an heterogeneous persistence process (proxied by two AR(1) with

different roots) for the monthly series seems to be appropriate to describe the first few lags,

Panel A shows that by conditioning on the joint effect of different horizon-specific predictors our

1Notice that throughout the paper we use the terms scale, frequency, level of resolution and time horizon as
synonyms.
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expected return series exhibits strong dependence at long lags. Panels B and C reinforce this

argument by showing the ACF of the extracted expected return series aggregated accordingly

to the temporal scale of the predictors used as conditioning information, i.e. one and four years

for the consumption-wealth and dividend-price ratios, respectively. We compare these ACFs

with that of the heterogeneous persistence process aggregated over the same time window.

The evidence suggests that the dynamics of expected returns implied by mid-to-low frequency

predictors cannot be reconciled with the one captured by the aggregation of a simple sum

of AR(1) processes. As a matter of fact, the ACF of the sum of AR(1) collapses at the 4-

years horizon while the model that combines information at multiple frequencies still manifests

interesting dynamics.2 This result sheds some new light on the importance of considering the

scale-specific information content of different predictors in estimating the dynamics of expected

returns (see, e.g. also Bandi et al. 2016).

A natural implication of this first result is that combining information at multiple horizons to

construct short-term expected returns can have first order effects for forecasting and investment

decisions. For instance, one can think of an agent with, e.g. , a monthly investment horizon, that

has to choose her allocation based on predictors available at the same time scale. By doing so,

however, she would disregard the fact that the forecasting power of macro-financial predictors

typically shows up at longer horizons, as discussed above. This leads to our second research

question; we investigate the implications for forecasting and portfolio choice of extracting short-

run expected returns from predictors that convey information at alternative horizons. To answer

this question, we first evaluate the forecasting accuracy of our model compared to standard

AR(1) specifications, and show that by extracting coherently information from horizon-specific

predictors allows to better capture both average and unusual developments in future expected

returns. Then, we compare our framework with the standard VAR-based approach within

an optimal asset allocation problem faced by a power utility investor (see, e.g., Kandel and

Stambaugh 1996 and Barberis 2000). We show that the optimal buy-and-hold allocation inherits

the horizon heterogeneity implied by our expected returns series extracted from information at

multiple time-scales.

In methodological terms we make two key choices. First, to combine information coherently

2It is worth pointing out that our approach is based on a very parsimonious parametrization (three parameters
effectively) and, yet, it exhibits a variety of autocorrelation structures at the fine level, as shown in Figure 8. See
Section 3 for an in-depth discussion.
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across horizons as captured, e.g., by the large R2s typical of long-run forecasting regressions,

we adopt a framework that relies on a parsimonious multi-scale model for time series (see Fer-

reira et al. 2006 and Ferreira and Lee 2007).3 More specifically, our multi-scale model couples

standard linear ARMA models at different levels of resolution via a link equation. In order

to achieve consistency between, e.g., monthly expected returns and lower frequency predictors

we exploit the Jeffrey’s rule of conditioning (see Jeffrey 1957, Jeffrey 1965 and Diaconis and

Zabell 1982 for more details). Thus, our modeling framework allows to condition the estimates

of univariate expected returns on the information obtained from multiple horizon-specific pre-

dictors. This is important for two reasons. First, our framework has the ability to use the

lower-frequency observations of predictors whilst maintaining the evolution of expected returns

at the highest possible frequency, something not provided by earlier work relying on OLS re-

gressions. Second, by relying directly on the lower-frequency dynamics of predictive variables,

our framework exploits in a more efficient way the scale-specific information inherent in each

predictor. This fact is reflected in the highly stationary dynamics of otherwise close-to-unit-root

predictors typically used in the literature, such as the monthly dividend-price ratio (see Panel

A of Table 2 for posterior estimates on the dynamics of the observable predictors).

Our second choice in terms of methodology concerns the estimation algorithm. In particular

we propose a Markov Chain Monte Carlo (MCMC) algorithm to provide posterior estimates of

quantity of interests of the model. This allows to make inference on the dynamics of expected

returns and the corresponding parameters in a single step, developing a robust finite-sample

framework that allows one to test, in a unifying way, hypothesis on the persistence and dynamics

of both scale-specific predictors and expected returns. Also, unlike standard approaches, our

MCMC estimation setting allows to fully characterize the marginal predictive distribution of

latent future expected returns over time.4

3Our econometric setting generalizes and extends the framework originally proposed by Ferreira et al. (2006)
along two key dimensions: first, we allow for the high-frequency process to be latent, and second, we combine
multiple scale-specific sources of information in a unifying setting. In that respect different layers of information
are not the result of a further aggregation and, instead, are allowed to be conditionally orthogonal to each other.
In terms of applications, we differentiate with respect to existing research on multi-scale models by investigating
the temporal aggregation properties within an asset pricing context, and by formally analyzing the forecasting
properties of the model on the basis of two forecasting accuracy measures, namely the mean squared error and
the log predictive score.

4Notice that our approach effectively uses few data points (only fifteen for the log dividend-price ratio), and
involves a latent state and non-linearities inherited by the aggregation scheme. In this setting, a simple OLS
cannot be implemented and a Maximum Likelihood-based approach requires a substantial computational burden.
Our MCMC algorithm overcomes these issues while maintaining a rather fast convergence, and, in turn, it has
the advantage of fully accounting for parameter uncertainty in the estimation process.

4



Our work takes important steps from existing research. First, the key and novel aspect of

our methodology is that we infer the properties of short-run expected returns from the lower-

frequency information content of predictors. This is the opposite of what has been done in

the previous literature, which typically postulates a dynamics for short-run expectations and

then infer mechanically the dynamics of long-run returns through forward aggregation (see, e.g.,

Barberis 2000 and Campbell and Viceira 2005). While this latter approach leads to consistent

modeling across time horizons, it does assume that the only relevant information is localized in

the short-run and no valuable gain can be obtained by instead directly incorporating longer-

horizon information. We reverse such logic by directly condition the short-run dynamics of

expected returns to the information conveyed by predictors at the medium- to long-horizons.5

Second, our econometric framework allows to effectively separate the time frame used to forecast

expected returns and to make investment decisions from the horizon of the predictors. In other

words, while existing research posits that a long-horizon investor who rebalances her portfolio

frequently, say at monthly frequency, will base her choice on parameters derived from a one-

month predictive regression, for our methodology to work one does not need to arbitrarily

assume that the forecasting horizon in predictive regressions coincides with the decision interval

of the agent.

This paper contributes to the literature on asset returns predictability.6 Our work is related

to Pastor and Stambaugh (2009) and Van Binsbergen and Koijen (2010). Following Pastor

and Stambaugh (2009) we think of forecasting variables, such as the dividend-price ratio or

the consumption wealth-ratio, as “imperfect predictors”. Differently from them, we think of

these predictors as scale-specific and, thus, we infer the properties of monthly expected returns

using only the information at the relevant scale rather than using monthly observations of raw

predictors themselves. Similar to Van Binsbergen and Koijen (2010) we use a latent-variables

approach to estimate the expected returns of the aggregate stock market. However, their frame-

5Similarly, our work is also related to a long econometric literature that studied the impact of the analysis
of observations at a scale coarser than the scale of the definition of the process of interest (see, e.g., Amemiya
and Wu 1972 and Bollerslev and Wright 2000). This literature usually defines processes at the coarse scales
as obtained by sub-sampling or by non-overlapping averages. While this approach may lead to the coherent
combination of multi-scale information, it still does assume that the only relevant dynamics are at the fine scale
of resolution. Differently from this literature, we build our models in a cascade way from coarse to fine levels of
resolution, while maintaining the capacity of consistent modeling of time series at different levels of resolution.

6See, e.g., Barberis 2000, Lettau and Ludvigson 2001, Lanne 2002, Avramov 2004, Ghysels et al. 2004, Ang
and Bekaert 2007, Calvet and Fisher 2007, Campbell and Thompson 2008, Cohen and Frazzini 2008, Lettau and
Van Nieuwerburgh 2008, Pastor and Stambaugh 2009, and Dangl and Halling 2012, just to cite a few.
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work still requires the prediction horizon to be the same as the frequency at which expected

returns evolve: in particular Van Binsbergen and Koijen (2010) use the annual information con-

tained in the price-dividend ratio and dividend growth rates to obtain the annual dynamics of

expected returns. Instead, our framework combines multiple predictors according to their scale-

specific information content, and allows one to use, e.g., annual information to make inference

about expected returns at higher, say monthly, frequency.

Our work is also related to the Markov-switching multi-fractal framework of Calvet and

Fisher (2007). Calvet and Fisher (2007) describe dividends dynamics as driven by shocks

with heterogeneous persistence, and then investigate the impact of these shocks with different

persistence levels on asset prices. Our framework, although similar in spirit, differs from theirs as

it allows to deal with the uncertainty that is naturally embedded in the dynamics of expected

returns, i.e. expectations are latent and parameters are uncertain. Moreover our proposed

framework is flexible, meaning that it accommodates both standard AR(1) dynamics as well as

more complicated long-memory-type of dynamics in a unifying framework.7

Finally, the multi-scale methodology we propose is connected to a recent literature that com-

bines data sampled at different frequencies to improve out-of-sample predictability (see, e.g.,

the Mixed Data Sampling Regression Models (MIDAS) approach originally proposed in Ghysels

et al. 2004, the Heterogeneous Autoregressive model of Realized Volatility (HAR-RV) proposed

in Corsi 2009, the Mixed-frequency forecasting framework of Foroni et al. 2015, Ghysels 2015,

and Schorfheide and Song 2015). Unlike these approaches, in our multi-scale framework the

high-frequency process is latent and the linkage across scales, namely the agreement between

frequencies of observations, is stochastic and nests absence of revision in information, e.g. stan-

dard AR(1) dynamics. In fact, we do not impose a priori that observable information at different

scales affects the future values of an observable quantity of interest, but rather we let the data

speak and tell if, as a matter of fact, the latent expectation formation process is heteroge-

neously affected by time-scale specific observable information. In that respect, our approach

reverse the rationale of MIDAS as it uses low-frequency economic predictors to extract a latent

higher-frequency process, rather than aggregating high-frequency information to forecast future

7Our work is also related to a stream of work in the econophysics literature that proposes a multifractal
random walk model for price changes (based upon the pioneering research into multifractal measures by Man-
delbrot (1974)). This approach has been used to rationalize the predictability of short-term stock volatility
by long-term past volatility, see e.g. Arneodo et al. (1998), as well as the return distribution’s moments under
time-rescalings, see e.g. Mandelbrot et al. (1997).
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variables sampled at different time-scales.8

2 Motivation

In this section we revisit the scale-specific information content of two standard predictors,

namely the consumption-wealth ratio, cayt, and the log dividend-price ratio, dpt, and then we

show the tension inherent in the standard AR(1)-framework to capture the multiple layers of

information conveyed by these forecasting variables. Our choice of stock market predictors is

motivated by the present value logic, see Campbell and Shiller (1988), and a linearization of the

accumulation equation for aggregate wealth in a representative agent economy, see Campbell

and Mankiw (1989) and Lettau and Ludvigson (2001). Arguably, cayt and dpt are also widely

used as benchmark in the forecasting literature.9

We start with simple linear predictive regressions of log real stock market returns, rt, on

the predictor zt, i.e.
10

rt+1,t+h = α+ βzt−h,t + ut,t+h ,

where rt+1,t+h represents the total return compounded (forward) from time t + 1 to time

t + h, zt−h,t denote the h-period backward moving averages of the predictor, zt is either the

consumption-wealth ratio, cayt, or log dividend-price ratio, dpt, and we let h = 1, . . . , 10 years.

These regressions take the name of forward-backward regressions, and recent empirical evidence

shows they are successful at detecting equilibrium relations occurring at specific frequencies or,

in our jargon, scales (see Bandi et al. 2016 for an in-depth discussion of this approach).11

8In contrast to existing approaches, in our multi-scale model it is really the latent high-frequency dynamics
that is the variable of interests and the degree of agreement across scales is not deterministic but uncertain and
unknown a priori. In that matter, our framework generalizes the mixed-frequency forecasting in which processes
at different scales are observable and disagreement of information is modeled either through a deterministic
linkage, e.g. MIDAS (see Ghysels et al. (2004), Corsi (2009)), or by treating missing observations in state-space
models, e.g. MF-VAR (see Mariano and Murasawa (2003), Schorfheide and Song (2015), and Harvey 1990 for
more details).

9It is worth mentioning that our framework is general and can accommodate a larger set of alternative
predictors. It is also important to stress that our framework exploits the scale-specific information conveyed by a
predictor. Thus, our framework rewards especially those setting where each predictor brings information about a
range of frequencies not already covered by the other predictors, i.e. those setting where the predictive horizons
are mutually exclusive. Our choice of cayt and dpt satisfies this condition.

10We use the expression “simple” regression to denote regressions that use just one predictor variable at a time.
We reserve the word “multiple” regressions for univariate regressions that use information from p > 1 predictor
variables simultaneously.

11Alternatively one could have used band spectral regression (Engle 1974) to detect high-, medium- and low-
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Figure 1 shows the resulting R2 from the predictive regressions. The figure highlights that

stock return predictability varies with the horizon. Importantly, the figure also shows that our

predictors do contain differential information: this can be readily inferred by the fact that the

maximum attainable R2 depends on whether the predictor carries information about medium-

or long-term returns. Indeed, by looking at the log dividend-price ratio, we observe that the

dependence between returns and the predictor increases with the time horizon, being stronger in

the long run, with R2-values between 8 and 10 years larger than 20%.12 Instead, when looking

at the consumption-wealth ratio, we find that its predictive power has a tent-shaped pattern

with a peak around 1 and 2 years, the R2-values being in the ballpark of 30%.

[Insert Figure 1 about here]

Given the above evidence, ideally one would like to model expected returns as containing both

medium- and long-term fluctuations. Next, we show that the standard practice of modeling

expected returns as an autoregressive process of order one (AR(1), henceforth) fails to capture

the rich dynamics structure that has emerged from the predictive regressions. To do so we

first select the horizon m at which the signal contained in the predictor operates, and then we

fit an AR(1) to the predictor temporally aggregated over this horizon.13 Relying on Figure 1,

we initially select m = 1-year for cayt and m = 4-years for dpt. The choice of m strikes a

balance between the number of non-overlapping observation available for the AR(1) estimation

and attaining a high (forecasting variable’s) signal-to-noise ratio.14 Panel A of Table 2 shows

the results from fitting an AR(1) process to the cayt and dpt series, temporally aggregated over

one- and four-years respectively. Suppose one wants to describe the annual dynamics of the

frequency relations. The forward-backward regressions have the advantage of maintaining time adaptation, and
localization in both time and frequency. Band spectral methods only guarantee the latter.

12This is consistent, e.g., with the evidence in Goyal and Welch (2003). The authors show that it is only for
periods of longer than 5 years that the dividend-price stops predicting itself, and instead begins predicting stock
market returns and dividend growth. In fact, had we used the longer sample 1930-2013, the R2 between 8 and
10 years would be larger, at about 40%.

13For a time-series zt, let the temporally aggregated series Zl be the series consisting of sums of m non-
overlapping points of zt. For example, for m = 3, we can aggregate monthly series to obtain a quarterly
series. Mathematically, we can define Zl as Zl =

∑ml
t=m(l−1)+1 zt =

(
1 + L+ . . .+ Lm−1

)
zml, where L is the lag

operator.
14In Section 5 we carefully test the optimal value of the coarsening window m on the basis of marginal likelihood

estimates. The choice of m has a deeper meaning. The sums of m non-overlapping points of zt can be interpreted
as the Haar-scaling component operating at scale j = log2(m)+1 of the raw series zt. Bandi et al. (2016) showed
that if two raw series are related via their components at scale j, then maximum predictability is attained at
horizon h = 2j . Therefore, our choice of m = 4-years for the dividend-price ratio imply maximum predictability
at horizon h = 8-years, consistent with the evidence in Figure 1.
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expected return series xt. It would be tempting to set the persistence parameter describing

expected returns equal to the persistence of cayt, i.e. φ = 0.51. However, we know that the

series obtained by temporally aggregating over m periods an AR(1) behaves approximately as

an AR(1) with root equal to φm (see Amemiya and Wu 1972).15 Therefore, the dynamics of

expected returns over 4-years, as it is implied by the annual-information content of cayt, would

have an ACF decaying as φ4 = 0.07, a much less persistent process than that implied by our

AR(1)-estimate of the four-year moving-average of dpt, namely φdp ≈ 0.8. Of course, one could

think of increasing the persistence of expected returns at annual frequency, e.g. by setting the

annual root of expected returns at φ = 0.80.25 = 0.94 so to match the persistence of dpt at the

four-year horizon. By doing so one would capture the low-frequency component of expected

returns proxied by dpt, at the cost of entirely missing the higher-frequency component captured

by cayt.

[Insert Table 2 about here]

The above results show that cayt and dpt do contain differential information about future re-

turns. Importantly, we have also shown that an AR(1) dynamics for expected returns can hardly

capture simultaneously these fluctuations operating at different horizons. In Section 5 we will

show that this conclusion holds even when we consider sum of independent AR(1) processes with

potentially different roots, as far as these autoregressive dynamics are specified at one scale only

and, in particular, at the highest possible frequency of observation. Thus, in the next section we

introduce a new method to model the dynamics of expected returns that overcomes conventional

time series analysis focusing exclusively on a given, usually high-frequency scale. In particular

our method will allow to extract the high-frequency dynamics of expected returns by coherently

exploiting the joint information obtained from various predictors at alternative, usually higher,

scales (yearly and longer). By combining scale-specific information, our framework exploits the

explanatory power of the predictors in a more efficient way than, say, standard OLS regression

methods. This gain in efficiency will be reflected in the highly stationary dynamics of otherwise

close-to-unit-root predictors, such as the monthly log dividend-price ratio (see once again Panel

A of Table 2).

15To be precise the temporal aggregation of an AR(p) model, is represented by an ARMA(p, r) where r =
⌊
p+ 1−p−1

m

⌋
, i.e. the aggregate variable follows an AR model of order p with MA residuals structure. Therefore

the ACF does not coincide with that of an AR(p) with rescaled roots; however, we show in the simulation and
estimation exercises that the MA effect is quantitatively negligible.

9



One last remark is in order. Although in this paper we take a reduced form approach to

justify our multi-scale framework, it is interesting to observe that the need for multi-frequency

dynamics of expected returns can also be justified from a structural point of view. For example,

Lochstoer (2009) proposes model where two risk factors, luxury good consumption and relative

price growth, operate at a business cycle and a lower frequency, “generational” cycle, respec-

tively. Since the risk factors drive the price of risk, then the risk premium dynamics in the

model is predicted to operate at both of these frequencies.

3 Multi-scale time series modeling

We introduce a multi-scale time series approach that coherently combines information across

different time horizons (e.g., monthly and yearly data) in a unifying setting. From a general

viewpoint, our modeling framework couples standard linear models specified at different time

scales with a linear stochastic linking equation between scales. For the ease of exposition, in

the following we consider the case with only two series: the latent expected return series, x1:nx ,

and an observable series, z1:nz , which contains information about the low-frequency dynamics of

expected returns. In the empirical analysis we extend the framework to multiple scale-specific

predictors.

The two series are specified at different temporal scales: in particular, we will assume that

x1:nx evolves at a fine scale (i.e. high frequency), while z1:nz evolves over a coarser grid (i.e.

lower frequency). We thus sometimes refer to x1:nx as the fine-level process, and z1:nz as the

coarse-level process. The difference between the temporal scales is captured by the relation in

the number of observations of the two series: m× nz = nx, with m > 1 (e.g. if x is at monthly

frequency, and m = 12 then z consists of yearly observations). To re-iterate, the sequence of x

and z are defined as;

x1, x2, . . . , xm, z1, xm+1, . . . , x2m, z2, . . . , xnx−m+1, xnx−m+2, . . . , xnx , znz

Our multiple time-scale framework allows for the dynamics of x1:nx and z1:nz to be described

independently by different time-series models. Consistent with existing literature on returns

predictability, we start by assuming that the latent expected returns, x1:nx , is described by a

10



stationary linear AR(1) process:

xt = φxxt−1 + ǫx,t, with ǫx,t ∼ N
(
0, σ2

x

)
, (1)

such that the marginal distribution of x1:nx = {x1, ..., xnx} has a known form p (x1:nx) =

N (0, Vx) with {Vx}ij = σ2
xφ

|i−j|
x /

(
1− φ2

x

)
.

We also assume that the coarse level z1:nz has an nz-dimensional stationary distribution given

by q (z1:nz). Although not required, it is useful to think of z1:nz as another AR(1) evolving over

a coarse grid, i.e.

zs = φzzs−1 + ηs, with ηs ∼ N
(
0, σ2

z

)
, (2)

so that, in this case, the implied nz-dimensional stationary distribution of z is given by q (z1:nz) =

N (0, Qz) with {Qz}ij = σ2
zφ

|i−j|
z /

(
1− φ2

z

)
.16

In our framework, the information conveyed by the dynamics of the fine-level process and

by the lower frequency predictors is not separated a priori; instead such information coexists

on the basis of a stochastic linkage that characterizes the relationship between scales. The link

between levels of resolution is described by the z values being the averages of non-overlapping

groups of m consecutive x values. To this end, let us define the nz × nx matrix A such that

E[z1:nz ] = Ax1:nx . Thus, A is a sparse matrix whose non-zero elements are all 1/m; in row i,

the non-zero elements are those in columns (i − 1)m + 1 to im. As a result, the link equation

takes the following form;17

p (z1:nz |x1:nx) =

nz∏

s=1

N

(
m−1

m∑

i=1

x(s−1)m+i, τ

)
= N (A · x1:nx , τ) , (3)

where τ = λ (A′VxA)11 I with I as the nz−square identity matrix and λ measuring the between

scales uncertainty. Observe that from the marginal distribution of expected returns p (x1:nx)

and the conditional distribution implied by (3), we can compute the marginal distribution of

16In the empirical section (see Section 5 and 5.1) we show that the AR(1) dynamics provides a good description
of the scale-specific predictor (e.g. the four-year component of dpt) although it might not well capture the
properties of the raw predictor series.

17More generally one can have zs = f(x1, x2, . . . , xm) + us where f can take many different forms such as
maximizing and averaging.
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the observable scale-specific predictor as

p (z1:nz) =

∫
p (z1:nz |x1:nx) p (x1:nx) dx1:nx = N

(
0, A′VxA+ τ

)
. (4)

Now the problem lies in the fact that the marginals q(z1:nz), p (z1:nz), and the stochas-

tic linkage p (z1:nz |x1:nx) are generally incompatible with each other. For example, if x1:nx is

an AR(1) then the conditional distribution p (z1:nz |x1:nx) implies a dynamics which is incon-

sistent with q (z1:nz) being an AR(1). The idea of the multi-scale approach is to revise the

fine-scale model, p(x1:nx), by super-imposing the information at the coarse-level (see Eq.(2)) to

restore consistency across the different levels of resolution. More prominently, q(z1:nz) can be

interpreted as a revision of the initial prior p(x1:nx) dynamics and the conditional likelihood

p (z1:nz |x1:nx). In that respect, we assume that the sources of information available to investors

is not necessarily restricted to historical data and other, related information, but also include

further prior experience of related events; investors then use this larger information set to base

their judgments in forming views of the likely outcomes. Although such views are typically

largely subjective, in our case we get rid of subjectivity by exploiting state-of-the-art assump-

tions of existing literature on returns predictability (see, e.g. West and Harrison 1997, Ch.11

for more details on intervention in forecasting systems).

Specifically, consistency across marginal distributions can be restored by using the Jeffrey’s

rule of conditioning for revising the probability p (x1:nx) to a new probability q (x1:nx). This en-

sures consistency across time scales (see Jeffrey 1957, Jeffrey 1965 and Diaconis and Zabell 1982

for more details on Jeffrey’s rule of conditioning).18 In our setting, the Jeffrey’s rule implies

that:

q (x1:nx) =

∫
p (x1:nx |z1:nz) q (z1:nz) dz1:nz (5)

with p (x1:nx |z1:nz) ∝ p (x1:nx) p (z1:nz |x1:nx) and, by standard linear projection,

x1:nx |z1:nz ∼ N
(
Bz1:nz , Vx −BWB′

)
(6)

18More formally, the application of Jeffrey’s rule assumes that the revised conditional distribution of x1:nx

given z1:nz , denoted by q (x1:nx |z1:nz ), is equal to the conditional distribution of x1:nx given z1:nz implied by
Equations (1) and (3), denoted by p (x1:nx |z1:nz ). This assumption means that given z1:nz , x1:nx is independent
of the new information that led to the revision of beliefs about z1:nz .
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where B = VxA
′W−1 and W = AVxA

′ + τ .

Various comments are in order. First, the multi-scale time series framework does not require

x1:nx and z1:nz to follow AR(1) processes. The framework put forward in this section can be

used with any stationary and invertible ARMA processes as building blocks for x1:nx and z1:nz .

We assume an AR(1) for x1:nx as we want to test whether such simple dynamics is well suited

to capture fluctuations at different frequencies, being the AR(1) the standard dynamics used

in most, if not all, existing literature (see, e.g. Stambaugh 1999, Barberis 2000, Pastor and

Stambaugh 2009, Van Binsbergen and Koijen 2010 and Pástor and Stambaugh 2012 among

others). Second, the multi-scale model is tightly parametrized. Indeed, in Section 3.1 we show

that with only three parameters (namely, φx, σx, λ) the model is able to generate a variety of

autocorrelation structures in the extracted latent expected returns.19 For forecasting purposes,

the number of parameters grows linearly by a factor of two for each additional scale-specific

predictors (i.e. φz, σz for each z). Finally, it is key to observe that the model is not built

using a bottom-up aggregation from the fine to the coarser resolutions, i.e. from (1) to (4) via

(3), but rather, the information cascade goes from the low frequency predictor to the latent

higher frequency expected returns, i.e. from (2) to (5). This allows to use information of the

predictors at the “right” scale. The following sections show that this approach based on low-to-

high frequency information cascade has important implications, especially for forecasting and

investment decisions.

3.1 Properties of multi-scale time series models: Persistence

The parameter λ plays a key role in how information across time scales is combined and how

much the distribution of x1:nx is revised. To illustrate this point, we study the behavior of the

covariance structure of the revised process x1:nx ∼ q (x1:nx) in the limit. It is possible to show

that the revised distribution of x1:nx is zero-mean normal, q (x1:nx) = N (0, Qx) with covariance

19See also Sections 4.2 and Section 5.2.
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matrix Qx = Vx −B (W −Qz)B
′. Then, the following results hold in the limit:20

lim
λ→0

AQxA
′ = Qz , (7)

lim
λ→∞

Qx = Vx . (8)

In words, when λ → 0, the covariance structure of the fine-level series x1:nx aggregated to coarser

resolution converges to the covariance structure of the coarse-level process z1:nz , i.e. maximal

agreement is achieved across fine and coarse scales. On the other hand, when λ → ∞ the

covariance structure of the fine-level process converges to the original covariance structure, i.e.

no revision occurs and q (x1:nx) = p (x1:nx). Equations (7)-(8) make clear that the parameter

λ has a natural interpretation in terms of how much the dynamics of the coarse-level process

influences the behavior of the higher-frequency latent state. The next figure exemplifies the role

of λ in determining the correlation structure of the revised fine-level process.

The top panels in Figure 2 show the autocorrelation of the fine-level process obtained from

a multi-scale time series model with parameters φx = φz = 0.9, σ2
x = σ2

z = 1, and for different

combinations of λ.

[Insert Figure 2 about here]

The top left panel shows the autocorrelation of expected returns obtained by fixing the level of

between scale uncertainty at λ = 0.01. The red and blue lines report the theoretical ACF (i.e.

Qx as implied in Eq. (5)) and the ACF of the series x1:nx extracted by using the estimation

procedure explained in Section 4, respectively. The figure makes clear that, ceteris paribus, for

low values of λ the model generates long-lasting effects on the dynamics of the fine-level process

which departs from the one that can be obtained by, e.g., an AR(1) model with autoregressive

parameter equal to φx (light blue line). Consistent with (8), the top right panel shows that if

the coarse-level does not bring sensible information to revise x1:nx , namely when λ → ∞, then

the persistence of the latent expected returns collapses to that of a standard AR(1). In this

sense an increasing λ has a natural interpretation in terms of the relative increase in uncertainty

20To prove Eq. (7) use the fact that as λ → 0, τ → 0 too. Hence W = AVxA
′ + τ = AVxA

′ and, thus,
B = VxA

′ (AVxA
′)

−1
. Plugging these expressions into Qx yields the result. Analogously, to prove Eq. (8) it

is enough to use the fact that limλ→∞ W−1 = limτ→∞ W−1 = 0. See also Theorem 11.1 and Theorem 11.2 in
Ferreira and Lee (2007). Also, observe that these theorems do not rely on the fine- and coarse-level being AR(1)
processes, and they are valid for any multi-scale time series model constructed with the link equation (3) and
stationary and invertible ARMA processes as building blocks.
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at the coarse level due to the lack of agreement with the latent fine level.

The structure of the covariance matrix for the revised latent fine-level process Qx = Vx −

B (W −Qz)B
′ implies that the persistence of x1:nx conditioning on z1:nz is also influenced by

the ratio σ2
x/σ

2
z . The bottom panels in Figure 2 explore this effect by fixing λ = 0.01 and

decreasing (left panel) or increasing (right panel) the ratio σ2
x/σ

2
z . The bottom left panel shows

that for a low value σ2
x/σ

2
z = 1/3 the decay of the autocorrelation function is slower than in

the case of higher value σ2
x/σ

2
z = 3 (bottom right panel). Interestingly, the bottom right panel

shows that the decay of the autocorrelation function of the multiscale process x1:nx can be faster

than the decay of an AR(1) process.

In all, Figure 2 conveys the message that the decay of the autocorrelation function of the

multiscale process x1:nx at the fine level is controlled not only by λ but also by the ratio σ2
x/σ

2
z .

However, it is only λ that controls the decay of the autocorrelation function of the process x1:nx

aggregated at the coarse scale, i.e. Ax1:nx . This is clearly shown in Figure 3 where each panel

displays the ACF of the process in Figure 2, this time aggregated over m = 48 periods.

[Insert Figure 3 about here]

Putting together the evidence provided by the bottom right panels in Figure 2 and Figure 3,

it is apparent that the “signal-to-noise” ratio σ2
x/σ

2
z mainly governs the short-term time series

dependence. When σ2
x/σ

2
z is large (bottom right panel in Figure 2) the fine level x1:nx decays

faster than the AR(1) but its non-overlapping averages are more persistent than those implied

by the standard aggregation of an autoregressive process (bottom right panel in Figure 3) as

dictated by the low value of λ = 0.01. Indeed, once aggregated over a four-year horizon, the

persistence of the expected returns implied by the multi-scale time series model is anywhere

higher than a four-year theoretical AR(1) dynamics, as far as λ is small and regardless of the

value of σ2
x/σ

2
z . Only when the horizon-specific predictor does not convey information, i.e. λ

is high, the long-lasting effects on the dynamics of the process x1:nx disappear, and the ACF

of the aggregated process collapses to that implied by the classic AR(1) case (see the top right

panel in Figure 3).

To sum up, we have shown in a controlled simulation setting that our multi-scale time series

model is able to generate richer autocorrelation structures than those obtained by standard
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ARMA models. We also studied the aggregation properties of our model, and compare them

with the standard forward aggregation of AR(1) dynamics. Finally, as a by product of this

analysis, we were able to give a suitable interpretation to the parameters of the model.

3.2 Properties of multi-scale time series models: Forecasting

The revised distribution of the expected returns characterized by equations (5)-(6) makes clear

that the multi-scale time series model is built in a cascade way from coarse to fine levels of

resolution. This has deep implication for forecasting, especially in the mid-to-long horizon.

Indeed, to compute the conditional distribution of future expected returns, not only one needs

to generate a sample of future observations at the coarse and fine levels (for the coarse-scale

predictors and latent expected returns, respectively) but also these two levels of resolutions

interact with one another. Consistent with this intuition, we use a two-stage procedure to

compute jointly the forecasts of the h−step ahead coarse and fine levels. First, we generate a

future realization of the coarse level (i.e. znz+1) conditional on the past. After that, a realization

of the (latent) fine level (i.e. xnx+1 : xnx+m) is simulated conditional on the past and on the

realization of the series evolving at low frequency.

When the multi-scale time series model is built using AR(1) blocks as in Eqs. (1) and (2) the

forecasting at the coarse and fine level takes a particular insightful expression. Some additional

notation is useful. Let r = xnx (φx, . . . , φ
m
x ) and Rij = σ2

xφ
|i−j|
x

1−φ
2min(i,j)
x

1−φ2
x

respectively be the m-

step ahead predictive mean vector and covariance matrix for a standard (i.e. not revised) AR(1)

process at the fine level. Let also denote the collection of parameters by Θ =
(
φx, σ

2
x, λ, φz, σ

2
z

)
.

With this notation at hand, the one-step ahead predictive distribution at the coarse level is

given by p (znz+1 | x1:nx , z1:nz ,Θ) ∼ N(fz, Fz) where

fz = Fz

[
σ−2
z φzznz +m−1

(
m−21′R1 + τ

)−1
1′r − P−1

nz
pnz

]
, (9)

and Fz =
[
σ−2
z +

(
m−21′R1 + τ

)−1
− P−1

nz

]−1
. Notice that pnz and Pnz are the predictive mean

and covariance implied by the conditional distribution p (znz+1 | z1:nz ,Θ). Conditional on the

prediction for the coarse-level process, the predictive distribution for the fine level is given by
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p (xnx+1 : xnx+m | xnx , znz+1,Θ) ∼ N(fx, Fx) where
21

fx = r +m−1R1
(
m−21′R1 + τ

)−1 (
znz+1 −m−11′r

)
. (10)

Equation (10) highlights the importance of using information in low-frequency predictors to

revise the distribution of the latent high-frequency process, and, consequently, to revise the

future expected path of the fine-level process. Indeed the (mean) forecast at the fine level is

the outcome of both the compounding effect of the forecast from a standard AR(1), i.e. r, and

the revision due to the lower-frequency information in predictors, see the term proportional to
(
znz+1 −m−11′r

)
.

The contribution of the multi-scale model in terms of forecasting can be better understood

considering two limiting cases. First, when the lower-frequency predictors do not provide sensi-

ble information to extract expected returns, i.e. λ → ∞ and, as a consequence, τ diverges too,

the future path of investors’ expectations collapse to the standard iterated AR(1) case, fx = r.

This is consistent with the limiting behavior described by Eq. (8) where the low-frequency

information does not imply any revision of the fine-level behavior. Second, when σ2
z and Pnz

are much larger than
(
m−21′R1 + τ

)
, the forecast for the coarse level is given by fz = m−11′r,

i.e. all the information is already contained at the highest frequency and the long-term forecast

is determined using models defined at a fine resolution (i.e. r = xnx (φx, . . . , φ
m
x )) and simply

aggregated to coarser resolutions, i.e. m−11′r.22 These are two extreme cases when the multi-

scale model has no bite. In all other scenarios, our multi-scale time series model implies that

forecasts at low frequency, i.e. znz+1, are going to affect future expectations above and beyond

the forward iteration of current expectations r.

To quantify this effect, we test the forecasting ability of the model, assuming the true data

generating process to be a multi-scale time series with parameters for x1:nx given by φx = 0.9

and σ2
x = 0.5. To resemble the empirical exercise, we set the length of the series to nx = 720, and

we fix the coarse-level parameter to m = 48. Thus, if x evolves at monthly frequency, then z is

observed over a four-year time interval. We also let the observable process z1:nz follow an AR(1)

21See Appendix A for a derivation.
22Thus, our framework subsumes the results in Tiao (1972) who shows that in a standard forward-iterated

aggregation setting (i.e. there are no multiscale effects), as far as the basic series x1:nx is stationary, forecasts based
on the temporally aggregated data znz+1 =

(
1 + L+ . . .+ Lm−1

)
xnx+m are fully efficient for large coarsening

windows m.
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process as in Eq. (2), with parameters φz = 0.9 and σ2
z = 1. In the following, we investigate the

role of the between-scales uncertainty parameter by simulating the data for different values of

λ.

[Insert Figure 4 about here]

Figure 4 shows the m-step ahead forecast of future expected returns at different point in time.

We compare the prediction that one would obtain using the expression in Eq.(10) (magenta

line with diamonds), with the m-step ahead forecast obtained from a standard persistent AR(1)

process, i.e. r = xnx (φx, . . . , φ
m
x ) (red line with circles). Consistent with empirical evidence on

returns predictability based on the dividend-price ratio, we fix the OLS estimates of the AR(1)

to φx = 0.98.23 We consider AR(1) dynamics both with and without a constant: the latter is

consistent with our data generating process that sets the unconditional mean of the process to

zero, while the former accounts for the small sample properties of our simulation setting. In

order to better understand the forecasting properties of our model, forecasts are super-imposed

to the time series of simulated expected returns x1:nx (light blue line) and to the low-frequency

predictor z1:nz (dashed, blue with circles).

From the top left panel, it is apparent the out-performance of the multi-scale model in cap-

turing m-step ahead expected returns. The forecast from a standard AR(1) quickly converges

to its unconditional mean E [x1:nx |AR(1) with no intercept] = 0 (horizontal red line), and it

largely misses the increasing expected returns, as well as the decreasing path in the last evalua-

tion point. The top right panel compares our multi-scale forecast with that from an AR(1) with

a constant. In this case the AR(1) forecasts (red line with circles) tend to the unconditional

mean of the autoregressive process with the intercept E [x1:nx |AR(1) with intercept] ≈ 0.025.

Also in this case, our multi-scale model better captures the dynamics of future expected returns

on each evaluation point.

The bottom panel of Figure 4 investigates how the forecasting properties of our multi-scale

model change as we increase the between-scales uncertainty parameter. Consistently with (10),

as λ increases, the forecast of the multi-scale model collapses to the m-step ahead prediction

from the AR(1) fitted on the extracted expected returns. All in all, when compared with a

23The value we use is close to the one in, e.g., Table II in Barberis (2000). Alternatively we also fit an AR(1)
with an intercept on the simulated expected return series, i.e. the light blue line in Figure 4, obtaining a value
very close to 0.98.
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standard AR(1)-based forward aggregation prediction, our multi-scale model shows a pseudo

out-of-sample forecasting performance which is more consistent with future realizations of the

latent expected returns. In fact, a separate calculation shows that, in our simulation exercise,

the mean squared errors of the prediction from the multi-scale model is about 10.6% lower than

that obtained from an AR(1) model.

4 Estimation strategy

The dynamics specified in (1)-(3) entails lots of non-linearities and complexities in the condi-

tional likelihood that cannot be easily addressed by using standard estimation methods. For

instance, the stochastic link between scales limit the possibility of using standard maximum like-

lihood methods to filter out the dynamics of latent expected returns. Therefore, for parameter

inference, we propose an hybrid Markov Chain Monte Carlo (MCMC) algorithm, which allows

to naturally characterize virtually any function of the posterior estimates of latent expected

returns and the corresponding structural parameters. Also, the possibility to define priors over

the parameter space allows to test assumptions, such as the persistence of expected returns and

the information content of scale-specific predictors.

4.1 Prior specification and posterior simulation

Amajor aspect of our model is that conditional on the latent expected returns, x1:nx , the dynam-

ics of scale-specific predictors are independent to each other, greatly simplifying the sampling

from the joint posterior distribution of the parameters. For scale-specific predictors, we specify

a standard prior structure assuming independence a priori of the parameters and the following

normal-inverse-gamma marginal priors: φz ∼ N (mφz ,Mφz), σ
2
z ∼ IG (νσz/2, νσzsσz/2) with

mφz ,Mφz the location and scale hyper-parameters of the AR(1) coefficient, and νσz , νσzsσz

the degrees of freedom and scale hyper-parameters for the conditional variance σ2
z .

24 Simi-

larly, for the fine level process we start from a classic independent normal-inverse-gamma prior

on the persistence parameter and the conditional variance of the unrevised process (see Eq.

(1)): φx ∼ N (mφx ,Mφx), σ2
x ∼ IG (νσx/2, νσxsσx/2) with mφx ,Mφx the location and scale

24The prior structure does not change by including more than one scale-specific predictor as they are orthogonal
conditional on the latent states. As such, we can specify the same marginal prior structure for each predictor
independently.
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hyper-parameters of the AR(1) coefficient, and νσx , νσxsσx the degrees of freedom and scale

hyper-parameters for the conditional variance σ2
x.

Hyper-parameters are set to be uninformative about the shape of the corresponding target

posterior distribution. Uninformative priors for the φx parameter are centered at 0.9 and flat

on most of the (−1, 1) range, with prior mass tailing off near ±1 to ensure stationarity. We

also considered alternative priors elicitation by assuming: (i) a zero-mean flat prior; (ii) an

informative prior in which 90% of the mass is concentrated around zero; (iii) an informative

prior in which 90% of the mass is concentrated around 0.9. For the conditional variances of both

observable predictor and latent states we fix the initial degrees of freedom equal to two-percent

of the sample sizes. Coupled with a small prior scale hyper-parameter of the inverse gamma,

our choice ensures that, a priori, shocks to observable predictors and expected returns are of

moderate size. Alternative, diffuse, priors are set such that posterior estimates are consistent

with maximum likelihood. More informative priors are set to have a higher probability mass

on bigger shocks on both expected returns and observable predictors.

Finally, as far as the between scales uncertainty is concerned, we specify a standard inverse-

gamma prior λ ∼ IG (νλ/2, νλsλ/2), with νσλ
, νσλ

sσλ
denoting the degrees of freedom and scale

hyper-parameters, respectively. We start with a benchmark elicitation by assuming a priori a

moderate level of discrepancy between information across different scales and expected returns.

Consistent with the indication provided by (7)-(8), we also consider three alternative settings.

First, we assume that observable predictors do not bring any information on extracting the latent

path of expectations although we keep such prior belief vague. Second, similar to before we

assume that predictors do not contain additional information to understand expected returns,

but now we also increase the precision of the prior. Third, we assume instead that predictors

almost perfectly reveal the underlying investors’ expectations formation process.

Although we use a conjugate prior setting, the joint posterior distribution of structural

parameters and the latent expected returns is not available in closed form. In order to draw

from the posterior distribution we follow a data augmentation principle which relies on the

complete likelihood function (e.g. Tanner and Wong 1987). Let the collection of parameters

defined as Θ =
(
φx, σ

2
x, λ, φz, σ

2
z

)
.25 Given the AR(1) dynamics imposed at different scales, and

25In the Appendix we generalize the estimation algorithm for k = 1, · · · ,K scale-specific predictors. For the
ease of exposition in the main text we represents the set of parameters for the case of K = 1.
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the corresponding link equation, and since the conditional distribution of x1:nx given z1:nz is

not revised by Jeffrey’s rule, we can then define the complete likelihood as

p (x1:nx , z1:nz |Θ) = p
(
x1:nx |z1:nz , φx, λ, σ

2
x

)
q
(
z1:nz |φz, σ

2
z

)
,

with q
(
z1:nz |φz,σ

2
z

)
describing the information super-imposed at coarse scale by the AR(1)

dynamics of expected returns. The complete likelihood highlights a key advantage of the es-

timation for the multi-scale time-series model: conditional on the coarse level, the parameters

corresponding to coarse and fine levels are independent. Given independence, the full con-

ditional distribution for the parameters at the fine scale and stochastic link equation can be

written as

p
(
φx, σ

2
x, λ|z1:nz ,x1:nx

)
∝ p

(
x1:nx |z1:nz , φx, λ, σ

2
x

)
p
(
φx, σ

2
x, λ
)
,

=
p
(
z1:nz |x1:nx , φx, σ

2
x, λ
)
p
(
x1:nx |φx, σ

2
x

)

p (z1:nz |φx, σ2
x, λ)

p
(
φx, σ

2
x, λ
)
,

similarly, the parameters of the observable coarse level can be sampled from the following full

conditional distribution

p
(
φz, σ

2
z |z1:nz

)
∝ q

(
z1:nz |φz, σ

2
z

)
p
(
φz, σ

2
z

)
.

Posterior simulation is implemented through a Gibbs sampler algorithm (Geman and Ge-

man 1984). We propose a collapsed multi-move Gibbs sampling algorithm (see e.g. Roberts

and Sahu 1997, Casella and Robert 2004, Ferreira et al. 2006 and Ferreira and Lee 2007), where

expected returns and the parameters are sampled in blocks. More specifically we combine for-

ward filtering backward sampling (see Frühwirth-Schnatter 1994 and Carter and Kohn 1994) to

extract the expected returns from scale-specific forecasting variables, a Metropolis-Hasting step

for direct inference on a set of parameters for which conjugacy is not obtainable and standard

Bayesian updating for the parameters of the predictive regression and the observable predictors.

A more detailed description of the MCMC algorithm and its convergence diagnostics are pro-

vided in Appendix B and C, respectively. In the following we also provide posterior estimates

for each of the alternative prior specification detailed above.
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4.2 A simulation-based discussion of the extracted expected returns

In this section we discuss, through simulation examples, the properties of the extracted expected

returns obtained from our MCMC sampler scheme for the multi-scale time series model. For

each simulation we run our MCMC estimation procedure so that we take into account both

uncertainty on the structural parameters and the latent nature of expected returns.26 In the

interest of space, we focus mainly on the ability of the procedure to recover the latent series

x1:nx from some given coarse-level process z1:nz .

For the sake of completeness, we apply the procedure to two simulated data sets. The two

simulation exercises differ in the way the dynamics of the observable scale-specific predictor

z1:nz is specified. For both exercise we assume that the initial, unrevised, process x1:nx for

expected returns follows an autoregressive processes of order one, with φx = 0.5 and σ2
x = 0.5.

We let nx = 720 and m = 12, so that the fine and coarse grids can be interpreted as monthly

and annual observations, respectively.

In the first exercise, we let the observable process z1:nz obey Eq. (4), i.e. z1:nz is truly obtained

by temporally aggregating the latent AR(1) process.27 Therefore, the revised distribution is

consistent across scales, i.e. q(z1:nz) = p(z1:nz) with p(z1:nz) being the distribution implied

by the latent state p(x1:nx) at fine level. In this case the multi-scale model does not affect

the dynamic properties of the latent expected returns as all the information is contained at the

finest grid of observation and no additional information is gained by considering lower frequency

predictors. Thus, if the algorithm is correct, we should recover a standard AR(1) dynamics for

x1:nx .

[Insert Figure 5 about here]

Panel A of Figure 5 shows that this is indeed the case. The autocorrelation structure of the

extracted latent expected returns closely match that of the underlying standard AR(1) process.

In fact, the time series dependence of the filtered process is even weaker than that of the true

original dynamics. This is due to the short sample considered and the parameter uncertainty

26Each simulation exercise is repeated fifty times, taking 20 hours on a WorkStation Intel(R) Xeon(R) with
3.20GHz, in total.

27Hence, in each simulation, we generate x1:nx by simulating nx observations from an AR(1) process; to obtain
the series z1:nz , we aggregate the AR(1) process using the matrix A. We then use the observable z1:nz to estimate
the parameters and to extract the latent x1:nx .
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which is embedded in the autocorrelation estimates.28

In the second simulation exercise, we assume instead the low-frequency predictor z1:nz fol-

lows an AR(1) process as in Eq. (2), with parameters φz = 0.9 and σ2
z = 1. This implies

that p(x1:nx), q(z1:nz), and p (z1:nz |x1:nx) are inconsistent. Thus, unlike for the first simulation

example, now the coarse-scale dynamics brings meaningful information about latent expected

returns, x1:nx , and consistency across scales can be restored by exploiting the Jeffrey’s rule

of conditioning. In order to make the information at the coarse-scale highly relevant for the

Jeffrey’s revision, we fix the parameter λ = 0.1. This low value implies that we should re-

vise substantially the distributions of x1:nx toward higher level of persistence, as captured by a

slowly decaying ACF.29 Panel B of figure 5 shows that our estimated ACF obtained from the

filtered x1:nx lines up remarkably well with the true theoretical ACF of the revised process, i.e.

x1:nx ∼ q (x1:nx) from Eq. (6). The latter falls within the 95% credibility region of posterior

estimates, while the ACF of standard stationary linear AR(1) model with root φx falls apart

completely.

To summarize, the evidence provided so far shows that the our modeling framework and

the proposed estimation strategy are successful in recovering the time dependence structure

of the latent expected returns x1:nx regardless of the initial assumption about the mapping

between fine- and coarse-scale processes. We conclude by observing that, in our second simu-

lation exercise, the ACF of the latent process x1:nx , after revising its distribution using the low

frequency information, decays in a geometric fashion rather than in an exponential way typical

of autoregressive processes. More specifically, ACF (k) ≈ ck2d−1 and d = 0.4, ie. the process

manifest long memory. As a by product of both simulation examples, we show that, despite

the parsimonious structure of the model (we have only five parameters), we have been able

to generate a much richer autocorrelation structure with respect to a standard AR(1) forward

aggregated process. Also, results in Panel B make clear that a small number of resolution levels

might be enough to induce an approximate long memory process at the finest time-resolution

level.

28In an unreported simulation exercise with a longer time series the estimated autocorrelation are practical
indistinguishable to each other in a statistical meaningful sense. Further results are available upon request.

29Recall Eq. (7): as λ → 0 the covariance structure of the aggregated version of x1:nx converges to that of the
coarse-level process z1:nz . See also Figure 2 and Figure 3.
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5 Empirical analysis

The multi-scale time series model (1)-(3) is general and can accommodate a large set of al-

ternative horizon-specific predictors with corresponding sizes m of the coarsening window. In

the empirical analysis we focus on two well-known scale-specific predictors to extract the time

series of latent expected returns, namely the log dividend-yield, i.e. dpt, and the consumption-

wealth ratio, i.e. cayt, proposed by Lettau and Ludvigson (2001). We do not take a stand

a priori on which predictor gives the highest information. Rather, our choice is motivated by

the fact that cayt and dpt brings information about a range of frequencies which the empirical

evidence shows not being overlapping (see Section 2). This allows a more clear identification of

frequency-specific effects on the dynamics of expected returns. Also, arguably, cayt and dpt are

widely used as benchmark in the forecasting literature.

Although our general specification does not rule out a priori any size of the coarsening

window m across predictors, it is worth to carefully investigate ex-ante the “right” scale at

which predictors operates in order to set m accordingly in the aggregation scheme and in

the link equation, see Eq.(3). A first indication is given by the forward-backward regression

results, see Figure 1. The solid blue line with circles indicates that the predictive power of

the consumption-wealth ratio sensibly increases for the one-to-two years horizon. This signals

that a correct coarsening window would be either m = 12 or m = 24 for cayt. Differently, the

log dividend-price ratio shows its predictive power being almost constant until year four and

steadily increasing afterward, justifying a coarsening window in the range m = 12, 48 months.

These results are in line with previous literature (see, e.g. Bandi et al. 2016 and the references

therein).

We now couple the evidence from these forward-backward predictive regressions with a

formal comparison of the marginal likelihoods of the multi-scale model for each of the two

predictors and different sizes of m. In our setting, an analytical evaluation of the marginal

likelihood is not possible. Gelfand and Dey (1994a) and Newton and Raftery (1994) showed

that a simulation consistent estimate of the marginal likelihood for a model Mi is obtained by

the harmonic mean of the likelihood values, evaluated at each draw of the parameters sampled

from the corresponding full conditional distributions.30 Table 1 reports the (log) marginal

30A potential issue in using the harmonic mean of posterior-implied conditional likelihoods is that the inverse
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likelihoods for both predictors. Panel A shows the results for the log dividend-price ratio. The

empirical evidence is in favor of a four-year coarsening window, against a two-year aggregation

period, being the marginal likelihood for the case with m = 48 around 40% higher than for

m = 24.

[Insert Table 1 about here]

Panel B shows that for the consumption-wealth ratio a one-year aggregation, i.e. m = 12, is

preferred to a two-year one, i.e. m = 24, as indicated by a 15% higher marginal likelihood. This

is consistent with the empirical evidence provided in Figure 1.

Combining the evidence provided by the in-sample R2 and the marginal likelihood estimates,

we assume throughout the rest of the empirical analysis that the mid-frequency fluctuations in

monthly extracted expected returns are proxied by the annual consumption wealth-ratio cayt,

i.e. m = 12, while the lower-frequency fluctuations are captured by the four-year log dividend-

price ratio dpt, i.e. m = 48. The predictor at the annual frequency is constructed as the annual

mean of the quarterly cayt series. The dividend-price ratio is constructed as the total dividends

paid by all stocks divided by the total stock market capitalization at the end of the year. The

lower-frequency log dividend-price is defined as its mean over a four-year window.31 The latent

expected returns are extracted at the monthly frequency to mimic a sensible time horizon for

forecasting and investment decision making. The sample period is 1952:01-2013:12. Inference

about the latent state and the parameters is made by implementing the MCMC algorithm

described in Section 4 and detailed in Appendix B.32

likelihood does not have finite variance. This can creates issues, especially when the marginal likelihood cannot
be computed in an efficient way (see, e.g. Chib 1995 and Chib and Jeliazkov 2001 for a detailed discussion
on alternative efficient procedures). However, in our setting, the marginal likelihood p

(
z1:nz |φx, σ

2
x, λ
)
can be

efficiently computed through the Kalman filter recursions (see Appendix B), mitigating potential concerns in
using an harmonic mean approximation. In that respect, when computing the marginal likelihood, we checked
the stability of the conditional likelihood for each draw from the posterior distributions. Results of the draw
specific likelihood evaluation are available upon request.

31We have also estimated the model under an alternative aggregation scheme. In particular, rather than taking
the average of quarterly cayt observation in a year, we use only the last observation at the end of the year.
Analogously, rather than taking the average of dpt over a 4-year window, we use only one observation every
four years, starting with December 1955. In both cases, the posterior estimates of expected returns and the
corresponding parameters do not change sensibly. Results are available upon request.

32To approximate the posterior distribution of the parameters and states we simulate 50,000 draws from the
full conditional distributions detailed in Appendix B, and discard 20,000 initial draws as burn-in sample, and
keep every other draw in order to increase the efficiency of the algorithm in approximating posterior summaries,
such as mean, median and variances. The tuning parameters are set to δφx = 0.01, δσ2

x
= 1.5 and δλ = 0.01.

Under this tuning the acceptance rates are 59%, 20%, 29% and 49% for φx, σ
2
x, λdp and λcay, respectively.
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5.1 The heterogeneous effect of scale-specific predictors

In this section we investigate the differential information content of our two scale-specific returns

predictors, as characterized by posterior distributions of λdp and λcay. We super-impose an

AR(1) dynamics to the time series of one-year consumption-wealth and four-year log dividend-

price ratios. Panel A of Table 2 reports posterior summaries for the persistence φz and the

conditional variance σ2
z for both scale-specific predictors, z = {cay, dp}.

[Insert Table 2 about here]

The magnitude of the posterior mean of φz and σ2
z , for zt = {cayt, dpt} shows that predictors

exhibit different degrees of persistence and volatility. The fact that φ̂dp 6= φ̂4
cay highlights that

there is no consistency between the mid- and low-frequency components captured by these two

predictors. Although the dynamics of zt does not guarantee coherence across scales, consis-

tency will be restored within our multi-scale model by the Jeffrey’s rule of conditioning. Sim-

ilarly, posterior estimates of conditional variances σ̂2
dp, σ̂

2
cay show that shocks to the one-year

consumption-wealth ratio have an impact four times bigger than shocks to the lower-frequency

log dividend-price.

As shown in Section 3.1, although the magnitude of the posterior mean of φ̂z is large and

significant, the degree of informativeness that observable lower-frequency predictors bring in

estimating and revising the dynamics of expected returns largely depends on the between-levels

uncertainty parameters λdp, λcay. In particular, in our model, a predictor associated with low λ

carries horizon specific information that helps understanding the dynamics of expected returns.

The top panel in Figure 6 reports the posterior estimates of λdp and λcay obtained from different

priors elicitation.

[Insert Figure 6 about here]

The benchmark prior assumes that a priori the four-year log dividend-price is informative,

although such prior is rather flat (blue line with diamond markers). Alternative priors elicitation

entail a complete flat distribution centered on the low informativeness of the four-year predictor

(dashed green line), a tight prior centered on high informativeness (light blue line with squared

markers), or tight prior centered on low informativeness (red line with circles). As we would
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expect, posterior estimates of λdp are somehow more sensitive to prior specifications. Let

us recall that λdp is estimated using nx/m = 15 data point only. Despite such minimum

amount of information, posterior distributions are largely overlapping, with the magnitude of

the differential in posterior means that is in the order of few decimal points, e.g. λ̂dp = 0.013

for the benchmark and λ̂dp = 0.030 for the flat prior. Overall, the left panel confirms the high

informativeness of the long-term predictor in determining the dynamics of expected returns.

The top right panel in Figure 6 shows that, at least at the monthly frequency, the weight of

the yearly average of consumption-wealth ratio, has a lower impact on expected returns. The

average between-level uncertainty jumps to λ̂cay = 0.42 under our benchmark uninformative

prior elicitation. Interestingly, the figure makes clear that posterior estimates are practically

equivalent regardless the initial prior assumptions about expected informativeness and disper-

sion of the consumption-wealth ratio. In fact, posterior estimates of λ̂cay obtained from the

benchmark prior show that the annual consumption-wealth ratio bring around 40 times less

information with respect to the four-year log dividend-price.

Consistent with the discussion in Section 3, the posterior estimates of Figure 6 suggest that

by jointly considering the differential informational content of the consumption-wealth ratio and

the log dividend-price may have first order implications in characterizing the high-frequency

dynamics of latent expected returns. Figure 7 confirms this intuition.

[Insert Figure 7 about here]

The blue line with diamonds represents the time series of expected returns at monthly frequency

extracted by jointly using the annual information contained in cayt and the lower-frequency

information carried by dpt. We compare the extracted expected returns from the joint scale-

specific predictors with two alternative processes for expected returns, extracted by using only

one coarse scale at a time: the expected return series one would obtain using only cayt at

yearly frequency (black line with circles), and the series obtained using only dpt at the four-

years frequency (red dashed line). Figure 7 makes clear that expected returns series filtered

from the joint observation of the consumption-wealth and price-dividend ratios accommodate

multiple frequency-specific features at once. In the first part of the sample, until the mid 70’s,

our expected returns series follows closely the (expected returns extracted from just using the)
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consumption wealth-ratio; it then inherits the trend behavior of the dividend-price ratio until

the late 90’s but without loosing interesting variations at higher frequency; eventually, our

series tracks again the consumption-wealth ratio in the last part of the sample. In other words,

by conditioning on the joint scale-specific predictors we allow to model features of expected

returns that inherit information coming from different frequency-specific shocks all at once. In

the following, we show that this result has first order implications for forecasting and optimal

portfolio allocations in the long-run.33

5.2 Persistence of expected returns

In this section we discuss the posterior estimates of the expected returns and the corresponding

parameters. Importantly, since our estimates for λdp and λcay imply a large revision of the

fine level process so to achieve a high degree of agreement between coarse and fine levels, the

parameter φx cannot be interpreted as the estimated autoregressive parameter and, thus, we

cannot conclude the degree of persistence for expected returns just by inspecting it. We show

below that it is the interaction of φx with the parameters driving between resolutions uncertainty,

λs, to determine the persistence of discount rates. Before doing so we discuss the posteriors of

φx and σ2
x computed from alternative priors distributions, see the bottom panels of Figure 6.

As a whole, posterior estimates are robust to alternative prior specifications. By assuming

either a flat (blue line with diamond markers) or informative prior on either low (light blue

line with squared markers) or high location (red line with circles), the posterior mean φ̂x is

practically equivalent. This formally implies that the null hypothesis that posterior means

are statistically equivalent under the alternative priors cannot be rejected at a meaningful

significance level. Interestingly, priors elicitation play a more significant role in the estimation

of the conditional variance of expected returns σ2
x. Panel B of Table 2 shows that the posterior

mean obtained from our benchmark prior is around σ̂x = 2.4. Such prior is uninformative and

centered around the assumption that shocks to expected returns are typically low in magnitude.

Increasing prior informativeness for the low variance case (light blue line with squared markers)

33Notice that the dynamics of the latent expected returns extracted from the joint process of dpt and cayt
cannot be reconciled with the one obtained by a simple model averaging scheme. In this respect, in a separate
set of calculations, we show that by averaging expected returns extracted from the two predictors separately on
the basis of the corresponding λdp, λcay, we cannot replicate the dynamics of the series obtained using jointly the
lower frequency predictors. This is the case also by using model marginal likelihoods as a weighting scheme as
typically done in the model averaging literature. These additional results are available upon request.
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shrinks the posterior mean by a half. However, such prior takes the extreme view that σ2
x ≈ 0 a

priori, namely, expected returns are constant over time. Finally, imposing a large variance σ2
x a

priori, generates posterior estimates which are fairly overlapping with respect to the benchmark

case. We show below that for these cases the autocorrelation function of the expected returns

is equivalent to our benchmark.

At the outset of the paper we argue that a low λ implies low uncertainty at the coarse level

due to agreement with the latent fine level, and induces the dynamics of the extracted latent

expected returns to be (after revision using the Jeffrey’s rule of conditioning) farther away with

respect to those of a standard AR(1) process. We now revisit this behavior using our expected

returns dynamics extracted from scale-specific predictors as a case in point. Figures 8 displays

the ACF of our extracted series at monthly horizons (Panel A), as well as the one from the

series aggregated over longer horizons, namely 1-year (Panel B) and 4-years (Panel C). The

plot compares these ACFs with that of an ARMA(2,1) process fitted on the filtered expected

return series. The ARMA(2,1) is an interesting example for two reasons. First, it has the same

number of parameters as our model.34 Second, an ARMA(2,1) can be thought of as the process

resulting from summing two (independent) AR(1) with different persistence roots. Thus, one

expects the ARMA(2,1) process to be able to capture multiple, low frequency fluctuations in

time series. Figure 8 reports the results.

[Insert Figures 8 about here]

Although the ARMA(2,1) process for the monthly series seems to be appropriate to describe

the first 8 lags, Panel A shows that the series of expected returns extracted from multiple coarse

levels (namely, the scale-specific consumption-wealth and log dividend-price processes) exhibits

strong dependence at long lags. The long-memory-type of persistence of our extracted expected

returns remains unmatched as we go farther in investigating the impact of past shocks. Panels

B and C highlight this fact by aggregating our extracted expected returns and comparing

its ACF to that implied by the aggregation of an ARMA(2,1) process. The Figure suggests

that the dependence of expected returns to shocks distant in the past is typically higher than

that implied by assuming a simple ARMA(2,1) dynamics. It is worth to mention that such

34Recall that the shape of the autocorrelation function is determined by effectively three parameters: φx, λ
and the ratio σ2

x/σ
2
z . See also the discussion in Section 3.1.
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long-memory-type of property is generated with a highly parsimonious structure that involves

the estimation of only three parameters.35 We also remark that this long-memory feature is

the result of modeling the time series from lower to higher frequencies, and of an estimation

algorithm that incorporates information at multiple time scales in a coherent way.

Although posterior estimates are comparable across different prior specifications, the results

in terms of autocorrelations can be more sensitive. To address this concern we also compute the

entire set of autocorrelations for the alternative priors as shown in Figure 6. Figure 9 reports

the results.

[Insert Figures 9 about here]

The top left panel shows that the autocorrelation of the extracted expected returns at the

monthly frequency is not sensitive to the prior specification of the parameter φx. In particular

the dependence at long lags is present independently of the prior specification. This becomes

apparent once expected returns are aggregated on a 4-year horizon, see top right panel: over

this aggregation horizon, the departure of the ACF of expected returns from that of a standard

persistent AR(1) (with autoregressive coefficient equal to the posterior mean value φx under

the benchmark specification, see Table 2) is present across different priors. The bottom left

panel shows the ACFs for alternative priors on the conditional variance of expected returns

σ2
x. The pattern is consistent for different prior specifications except for the case with strong

beliefs on σ2
x ≈ 0 (solid line with squares). Such prior embeds however the rather extreme

view that expect returns are constant over time, a priori. Despite this extreme view, posterior

estimates are still consistent with the logic of our multi-scale model as shown in the bottom

right panel for the 4-year expected returns. Indeed, for the case of tight priors on σ2
x ≈ 0,

although the ACF decays with a higher rate compared to the alternative priors, we still have

that the persistence of shocks to expected returns is sensibly higher than the one implied by a

classic AR(1) specification computed with the same φx.

The analysis so far suggests a long range dependence behavior for the monthly series of

expected returns revised by the scale-specific information brought by two distinct predictors.

However, although our expected return series emulates a long memory process, it is different in

essence. In our framework, the long memory type of behavior is explicitly modeled as a result

35The parameters φz and σz need to be estimated only for forecasting purposes. They do not directly enter
the ACF of the latent fine-level process, which is only determined by φx, σx, λz.
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of an information cascade from low- to -higher frequency predictors. Thus, the main advantage

of our multi-scale framework over actual long memory models is increasing interpretability in

the light of economic theory.

5.2.1 Comparison with OLS predictive regressions

In this section we address the concern that our extracted expected returns may simply approx-

imate the fitted value from a standard predictive regression. We first run a simple regression of

quarterly returns on the predictor zt:

rt+1 = α+ βzt + εt+1 ,

where zt is either the consumption-wealth ratio, cayt, or the log dividend-price ratio, dpt. In this

case the expected returns from OLS regressions, µ̂t = α̂+ β̂zt inherits the correlation structure

of the chosen predictor. We also run a multiple regression of quarterly returns on both cayt and

dpt,

rt+1 = α+ βcaycayt + βdpdpt + εt+1 , (11)

so that in this case the ACF of expected returns, µ̂t = α̂ + β̂caycayt + β̂dpdpt, will depend on

the relative importance of the predictors at the chosen quarterly forecasting horizon. Figure

10 compares the ACF of our expected returns series (solid line with diamonds) with the fitted

value from the dividend-price regression (black line with square markers), and with the fitted

value from the consumption-wealth regression (red dashed line with circles), as well as with the

fitted value from multiple regression on consumption-wealth and dividend-price ratios (green

line with triangle markers).

[Insert Figures 10 about here]

In all cases we observe that the ACF of our multi-scale filtered expected returns is different from

the ones implied by OLS predictive regressions. First, the multi-scale ACF has lower first-order

autocorrelation compared with OLS fitted expected returns. Second, and more importantly, the

rate of decay of the ACF for our multi-scale process lies in between those of the close-to-unit

root dpt series and the fast mean-reverting cayt. This fact is due to the parameters λdp, λcay

which control how much of the coarse-level scale-specific information from predictors influence
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shorter-term expected returns. Finally, the long range dependence in our series at lags of about

8-years coincide with that implied by the fitted value of an OLS regression exploiting both

predictors.

Figure 11 portrays the extracted expected returns implied by our multi-scale mode against

the fitted values obtained from a simple OLS regression with the log dividend-price ratio (Panel

A, black line with squares), or with the consumption-wealth ratio (Panel B, red dashed line

with circles) as the sole predictor variable, as well as against the OLS fitted values computed

conditioning on both predictors (Panel B, green line with triangles). Panel A shows that the

expected return series from a standard predictive regression based on the log dividend-price

ratio partly tracks (the mean of) our extracted expected returns. However, the former breaks

the 95% credibility intervals across late 70s and early 80s, as well as throughout early 2000.

This is due to the fact that, unlike our multi-scale model, a standard OLS regression with

a low-frequency predictor as the log dividend-price ratio cannot capture the higher-frequency

fluctuations from the consumption-wealth ratio, a fact that makes our series more transient in

the short term as documented from the first few lags of the ACFs shown in Figure 10.

[Insert Figures 11 about here]

Interestingly, Panel B makes clear that by choosing a quarterly horizon for the OLS multivari-

ate predictive regression (11), the fitted value favors consumption-wealth as driving factor of

expected returns, as opposed to the log dividend-price ratio. As a matter of fact, the fitted

value from the regression that uses both cayt and dpt overlaps almost completely with that

from the regression using cayt as the sole predictor. This is important because it shows that a

standard OLS framework is unable to resolve the tension between the horizon-specific informa-

tion embedded in the predictors. This in turns affects optimal portfolio decisions which are, by

construction, influenced by the predictive power of the forecasting variables used. More specif-

ically, panel B of Figure 11 implies that a long-term investor that rebalances her portfolio at

quarterly frequency, will likely choose the parameters derived from a quarterly return forecast-

ing regression, thus favoring those fluctuations induced by cayt only. This is true despite the

fact that the dividend-price ratio arguably contains dominating information about longer-run

fluctuations in returns. In that respect, by jointly combining different horizon-specific layers of
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information in extracting expected returns, our multi-scale time series model allows to reconcile

the tension between the heterogeneous information content of predictors and the time frame

typically assumed for investment decision making.

5.3 Forecasting future expected returns

The simulation exercise in Section 3.2 shows that our multi-scale model helps to better capture

future fluctuations in expected returns. We now check the forecasting ability of the model in

a realistic setting. More specifically, we compare the m-step ahead predictive performance of

our multi-scale model against the performance of an iterated forecasts from an AR(1) as well as

alternative benchmarks intended to capture heterogeneous persistence. The conditional predic-

tive for the one-block ahead forecast p (xt+1 : xt+m | x1:t, zs+1,Θ) is obtained by conditioning

on the one-step ahead forecast from the coarse-level predictive, see Eq. (9). Actual forecasts

are then computed from the marginal predictive distribution

p (xt+1 : xt+m | x1:t, zs+1) =

∫
p (xt+1 : xt+m | x1:t, zs+1,Θ) p (Θ|x1:nx , z1:nz) dΘ , (12)

for s = 1, · · · , nz and t = 1, · · · , nx. The marginal distribution (12) is approximated by using an

importance sampling (IS) estimator (see, e.g. Geweke 2005, and Geweke and Amisano 2012), in

which sampling draws from the posterior distribution of the parameters are obtained using the

entire sample of observable predictors and latent expected returns.36 Multi-period forecasts are

obtained by iterating l times the one-block ahead and the one-step ahead predictive distributions

of the fine- and coarse-level, respectively.

To start our analysis we first compare graphically the m-step ahead forecast obtained using

our multiscale time series process against that obtained from a standard AR(1). To compare our

results with existing research, we calibrate the persistence parameter of the competing AR(1)

to a high value of 0.98, as commonly used in the literature (see, e.g., Table II in Barberis 2000).

Figure 12 shows the model-implied future expected returns for the horizon h, Et [xt+1:t+h] =

36The predictive density (12) can be alternatively approximated with an harmonic mean estimator; see Gelfand
and Dey (1994b), or the truncated elliptical mean estimator in Sims et al. (2008). However, conditional on using
the same set of parameters across forecasting horizons, namely the parameters of the model do not change as
the forecasting horizon increases, the predictive likelihood can be consistently estimated directly by using draws
from the posterior. In that respect the importance-sampling estimator is unbiased, unlike, for instance, the mean
harmonic estimator (see, e.g. Geweke 2005 for more details).

33



xt+1:t+h|t for the years 1954-1959, 1978-1983, 1988-1991, and 2007-2011 which represents the

period across the great financial crisis.

[Insert Figures 12 about here]

More specifically, at t = 1953, 1977, 1987 and t = 2006 we compute the h = 48 step ahead fore-

casts, which coincides with the coarsening window in Eq. (3).37 Those forecasts are compared

with the series of extracted latent expected returns for 1-to-48 months ahead (solid blue line). It

is noteworthy that the forecasts of the multi-scale model (magenta line with diamond markers)

are quite different from the one produced by the autoregressive model (red line with circles).

While the forecasts of the AR(1) always have a monotone exponential decay shape towards the

unconditional mean of the series, the forecasts of our multi-scale expected returns have more

interesting non-linear shapes which better anticipate future patterns. Also, the figure highlights

how the standard AR(1) model give poor medium term, 1-to-48 months, ahead forecasts.

Figure 12 suggests that by incorporating information at multiple horizons has implications

for forecasting future expected returns. We now formally investigate this result by comparing

the forecasting performance of our multi-scale model against those obtained from three different

benchmarks: (1) an AR(1) process (see, e.g., Barberis 2000); (2) an heterogeneous persistence

process where the heterogeneity is generated by summing two independent (at all leads and

lags) AR(1) processes with different roots; (3) an AR(1) model for which the mean is allowed to

vary stochastically over time (this process has been widely used in the term-structure literature,

see, e.g., Balduzzi et al. 1998 and Calvet and Fisher 2015). Each of the three benchmark is fitted

on the latent expected returns series using the full sample, and then we use the parameters’

estimates to generate the model-specific forecasts.

To compare the performance of alternative models we rely on two complementary measures

of forecasting accuracy. We first compute a standard Mean Squared Error (MSE) which allows

to investigate the performance of alternative methodologies in terms of point forecasts. Gneit-

ing (2011) showed that MSE is a consistent evaluation measure when the point forecast equals

the mean of the predictive distribution. As such we compute point forecasts for each model

37In the portfolio allocation exercise below we extend the forecasting horizon to l = h
m

> 1 coherently with the
idea of modeling investment decision at longer horizons.
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as the average of the corresponding distribution of future expected returns predictions. Panel

A of Table 3 shows the MSE obtained from our multi-scale model as well as those from the

alternative benchmarks.

[Insert Table 3 about here]

The MSE obtained from the multi-scale model is lower throughout the forecasting horizons

h = 24, 36, 48 and comparable at h = 12 to the MSE of an AR(1) or of a sum of two AR(1).

When compared with the persistent AR(1) model, the use of multiple time scales reduces

the mean squared prediction error for h = 48 from 4.877 to 4.277, a reduction of about 12%.

Similarly, the 48-step ahead forecast obtained from the sum of two independent AR(1) processes

generates a prediction error which is 10% higher than the one obtained from the multi-scale

time series model for the same horizon. As far as the model with a stationary stochastic mean

is concerned, the multi-scale model delivers a substantially lower average square loss across

all horizons. Interestingly, while comparable to others benchmark at short horizons, the out-

performance of our multi-scale model specification increases with h. This result is driven by

the fact that forecasts at the coarse level for the predictors guide the forecasts at the fine level

for expected returns, as shown in Eq. (10), and reduce the prediction error especially at the

intermediate-to-long prediction horizons.

Although point forecasts of future expected returns reveal interesting aspects of the predic-

tive ability of our multi-scale model, such conditional means cannot provide insight into the

uncertainty that is associated with producing these forecasts. In that respect, a direct eval-

uation of the marginal predictive likelihood (12) is a natural tool to assess the ability of the

multi-scale time series model to predict unusual developments in future expected returns, such

as the likelihood of large drops or jumps in future expectations given current information. We

therefore also evaluate the forecasting accuracy of our model, compared to the alternative spec-

ifications as above, on the basis of a log predictive score measure. The log predictive score for

the model Mi, for the h-step ahead prediction of expected returns can be expressed as

SMi (h, nz) =

nz−1∑

s=1

log p (xsm+1 : xsm+h | x1:sm, zs+1) , (13)

and is computed by evaluating the marginal predictive distribution (12) with the extracted
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latent expected returns over the prediction sample. We let h = 12, 24, 36, 48, i.e. h runs from

one year up to our largest coarsening window, i.e. m = 48. Panel B of Table 3 shows the results.

The log-predictive score further highlights the performance of our multi-scale time series model

as the forecasting horizon increases. Indeed, when compared with the sum of two independent

AR(1) processes, the predictive score of the multiscale model is around 20% greater at h = 12,

more than twice at h = 24 months ahead, about 2.7 times higher for h = 36, and about three

times as large at h = 48.38 This is consistent with the prediction pattern showed in figure 12.

The fact that short-term forecasts are obtained by directly including lower frequency information

allows to increase the ability of the model to anticipate longer-term future expected returns.

Again, as for the average squared loss measure in Panel A, by including in a standard AR(1) a

time-varying mean does not help to explain the out-performance of the multi-scale specification.

As a whole, Table 3 makes clear that our multi-scale time series model specification allows to

better capture both average and unusual developments in future expected returns at short-,

medium- and long-horizons.

One last remark is in order. In traditional time series analysis, the economic agent defines on

which time scale to analyze the time series depending on the decision interval and/or investment

horizon. She then finds a reasonable model and performs forecasts at that scale; however, in

general, that model will not be reliable for performing forecasts at other time scales. In contrast,

our multi-scale model is able to forecast reliably at all levels of time resolution that are included

in the model. We next move to study the consequences of multi-scale modeling and forecasting

for portfolio allocation.

5.4 Portfolio allocation for a buy-and-hold investor

One of the key advantage of our multi-scale time series model is to jointly combine the het-

erogeneous information content from different horizon-specific predictors to construct higher-

frequency expected returns. Intuitively, this allows to reconcile the tension between the time

scale at which forecasting variables show their highest predictive power and the time frame that

is typically assumed for investment decision making. In this section we investigate further this

implication on the basis of a standard asset allocation framework for buy-and-hold investor (see,

38For example, at h = 48 we compute exp(−27.158)/ exp(−28.252) = 2.986.
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e.g. Barberis 2000 and Avramov 2004).

We assume the investor has a power utility with risk aversion γ and at time T = nx she

has to decide the optimal allocation of wealth in the risky asset with an horizon of h months.

There are two assets: the continuously compounded real return on the value-weighted market

portfolio in month t, and the real monthly return on Treasury bills rf . For simplicity, we

suppose that the return on T-Bills is a constant (this is similar to, e.g., Barberis 2000). Future,

i.e. at T + h, realized returns in excess of the risk-free rate are related to expected returns

ET [rT+1:T+h] = xT+1:T+h|T as follows

rT+1:T+h = αh + βhxT+1:T+h|T + εT+1:T+h, with εT+1:T+h ∼ N
(
0, σ2

h

)
, (14)

with xT+1:T+h|T denoting the cumulative forecast obtained from the marginal predictive dis-

tribution (12). In that respect, our portfolio allocation is purely out-of-sample as it is derived

conditioning on the information available at time T .39

It is worth to notice that the predictive regression (14) allows to directly compare the

optimal allocation obtained from our multi-scale time series model with the one an investor

would obtain assuming all the information lies at the highest possible, in this case monthly,

frequency. The latter implies that future expected returns are obtained by iterating short-run

forecasts. If initial wealth is WT = 1 and w ∈ (0, 1) is the allocation in the market portfolio,

then the end-of-horizon wealth is given by

WT+h = (1− w) exp (rfh) + w exp (rfh+ rT+1 + · · ·+ rT+h) ,

We assume that investor’s preferences over terminal wealth are described by a constant relative

39Notice that posterior estimates of the regression parameters are obtained by estimating a forward-backward
regression for horizons h = 1, ..., 120 for each draw of the in-sample extracted expected returns x1:nx . As far as
posterior estimates are concerned, we specify a conjugate independent normal-inverse-gamma prior structure;

α, β ∼ N (mβ ,Mβ) , σ2 ∼ IG (νβ/2, νβsβ/2) ,

with mβ ,Mβ the location and scale hyper-parameters of the regression coefficients, and νβ , νβsβ the degrees of
freedom and scale hyper-parameters for the conditional variance if the idiosyncratic error σ2. Marginal priors do
not depend on the investment horizon as the functional form of the parameters does not change for any h > 1
(see Appendix B for more details on the estimation procedure).
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risk aversion utility function of the form

U (WT+h) =
W 1−γ

T+h

1− γ
,

with γ > 1 the coefficient of relative risk aversion. Let rT+1:T+h be the cumulative excess stock

return over the investment horizon h, the buy-and-hold optimal allocation is then represented

by the solution of the problem

w⋆ = max
w

ET

(
((1− w) exp (rfh) + w exp (rfh+ rT+1:T+h))

1−γ

1− γ

)
,

ET denotes the fact that investors calculate their expectations conditional on the information

available at time T . The portfolio choice is obtained by averaging the cumulative predicted

returns over the corresponding marginal posterior draws obtained from the MCMC algorithm

outlined in Section 4 and detailed in Appendix B.

At the heart of this paper is the issue of which information the investor uses to compute this

expectation. As discussed in Section 3.2 and 5.3, expectations on future returns are very different

depending on whether we acknowledge the information content of multiple scale-specific predic-

tors. In order to disentangle the impact of horizon-specific predictors we show the outcome of

the buy-and-hold portfolio allocation the conditions on the mid-term consumption-wealth ratio

only, or on the long-run log dividend-price ratio only, or both. For the sake of comparison with

existing literature we also compute the optimal allocation implied by a monthly compounded

dividend-price ratio (see, e.g Barberis 2000 and Pástor and Stambaugh 2012). Figure 13 show

the optimal portfolio allocation for an investor with a relative risk aversion equal to γ = 5 and

investment horizon equal to h = 120 months. For the sake of completeness we investigate the

optimal allocations under different settings.

[Insert Figures 13 about here]

Top panels report the exposure to the risky asset computed by fixing current expected returns

on the last sample observation and the value of the lower frequency predictor is either at

their sample minimum (left panel) and maximum (right panel).40 The figure makes clear that

40In the standard predictive regression case the last value of the predictor also corresponds to the last value of
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by conditioning on both the four-year log dividend-price ratio and the one-year consumption

wealth ratio the optimal allocation (blue line with diamonds) takes an out-of-sample path which

inherits the dynamics of both dpt (light blue line with squares) and cayt (red line with circles).

Consistent with our initial intuition depicted in Figure 1, in the short term the information

predominant comes from cayt while dpt dominates in the longer run. Interestingly, by directly

using dpt as perfectly characterizing monthly expected returns, the investor would prefer a

rather flat exposure to risky assets across the investment horizon. Such behavior is consistent

with the close-to-unit-root evidence shown in Figure 10.

As shown in section 3.2 the multi-scale prediction implies that future expected returns

strongly depends on forecasts for the coarse level information. As such, we would expected

that the current value of the lower frequency information is indeed crucial in driving investor’s

future expectations. The bottom panels of Figure 13 confirm this intuition by now fixing the

last extracted expected returns to their minimum (bottom left) or maximum (bottom right)

values. When compared with the respective top panel, we observe that the optimal allocation

does not change sensibly, for the same given last observations of economic predictors. In this

sense, the frequency-mixing feature of the optimal allocation is preserved.

6 Concluding Remarks

We define expected returns as the outcome of a multiple time-scale information updating pro-

cess, and investigate whether the dominant view that long-run investors’ expectations are the

results of an aggregation of short-term expected returns is backed up by empirical evidence.

Methodologically, we propose a parsimonious multi-scale time series model that allows to com-

bine information coherently across horizons (or levels of resolution) to extract the dynamics

of univariate expected returns. By doing so, we allow the researcher to reconcile the tension

between the heterogeneous information content of different scale-specific predictors, with the

time frame that is typically considered in empirical finance applications such as forecasting and

portfolio allocations.

Empirically, we show that simultaneously considering the information cascade that comes

from low- to high-frequency predictors, allows to identify long-lasting effects in the dynamics of

expected returns.

39



expected returns. Importantly these effects cannot be captured by standard persistent ARMA

processes. Finally we show that combining information at multiple horizons to extract the

series of expected returns has dramatic implications for forecasting and, thus, it is of first order

importance for investment decision purposes. We quantify these effects along several dimensions.

Although we investigate the properties of the multi-scale time series model with a particular

emphasis on the dynamics of expected stock returns, our framework is relevant in any setting

where it is important to incorporate information available at different time scales in the infer-

ence about the process of interest. For instance, our forecasting dynamics might be useful to

government and budget office that need to forecast productivity and GDP over long-horizons,

and for central banks that need to incorporate information about the medium- and long-term

dynamics of output and inflation to set interest rates. Similarly, in a spirit close to Corsi (2009),

our framework can be used to forecast volatility using the information contained in volatility

components realized over different time horizons. Finally, within our framework, we showed how

agents can combine time-scale specific information and yet form internally consistent expecta-

tions over multiple horizons. It would be interesting to investigate whether our expectation

formation process can explain excess volatility puzzles pointed out in, e.g., Shiller (1981) and

Stein (1989), and, more recently, in Giglio and Kelly (2015) (even after accounting for discount

rates). We view these as promising avenues for future research.
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Figure 1. Predictive Regressions

Horizon-specific predictive regressions. This figure shows the in-sample R2 of simple linear regressions (with an
intercept) of h-period continuously compounded market returns on the CRSP value-weighted index on h-period
past consumption-wealth ratio (solid line with circles) and on h-period past log price-dividend ratio (solid line
with asterisks). For the consumption-wealth ratio regressions, the sample is quarterly and spans the period
1952Q1-2013Q4. For the dividend-price ratio regressions, the sample is annual and spans the period 1952-2013.
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Figure 2. Autocorrelation Functions of Multi-scale time series Vs AR(1)

Multi-scale time series Vs AR(1): autocorrelation functions. This figure shows the theoretical autocorrelation function for a simulated multi-scale time series x1:nx (red
line with circles), the ACF of the series extracted by conditioning on the lower-frequency series z (blue line with diamonds), and the theoretical ACF of an AR(1) with
the same autoregressive parameter as the one used to simulate the multi-scale process (cyan with squares). The parameters φx = φz = 0.9 are fixed across panels. The
top left panel shows the results assuming λ = 0.01 and σ2

x = σ2
z = 1. The top right panel shows the results for a simulation with λ = 10 and σ2

x = σ2
z = 1. The bottom

right panel shows the results for a simulation with λ = 0.01 and σ2
x/σ

2
z = 3. The bottom left panel shows the results for a simulation with λ = 0.01 and σ2

x/σ
2
z = 1/3.

We simulate nx = 720 (say, monthly) observations with m = 48 in all cases.
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Figure 3. Autocorrelation Functions of Multi-scale time series Vs AR(1): Four-year aggregation

Multi-scale time series Vs AR(1): autocorrelation functions of four-year aggregated series. This figure shows the theoretical autocorrelation function for a simulated
multi-scale time series (red line with circles) aggregated over four years, the ACF for the series extracted by conditioning on the lower-frequency series z and aggregated
over four-years (blue line with diamonds), and the theoretical four-year ACF of an AR(1) with the same autoregressive parameter as the one used to simulate the
multi-scale process (cyan with squares). The parameters φx = φz = 0.9 are fixed across panels. The top left panel shows the results assuming λ = 0.01 and σ2

x = σ2
z = 1.

The top right panel shows the results from the simulation expected returns with λ = 10 and σ2
x = σ2

z = 1. The bottom right panel shows the results for a simulation with
λ = 0.01 and σ2

x/σ
2
z = 3. The bottom left panel shows the results for a simulation with λ = 0.01 and σ2

x/σ
2
z = 1/3. We simulate nx = 720 (say, monthly) observations

with m = 48 in all cases.
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Figure 4. Multi-scale Vs AR(1) Forecasts: Simulation Exercise

Comparing forecasts in simulation. This figure shows the forecasts obtained by the multi-scale time series model in comparison with those obtained by a highly persistent
AR(1) model. Except for the between-levels uncertainty all other parameters are fixed, with φx = φz = 0.9, σ2

x = .5 and σ2
z = 1. Top left (right) panel shows the m-step

ahead forecast obtained by fixing λ = 0.06 compared with the m-step ahead (iterated) prediction obtained from an AR(1) with φx = 0.98. Bottom left (right) panel
shows the m-step ahead forecast obtained by fixing λ = 0.6 (λ = 6) in comparison to the m-step ahead forecast obtained from an AR(1) with φx = 0.98. The results are
obtained by averaging forecasts on 20,000 patterns for (simulated) predictors, z, and expected returns, x.
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Figure 5. Persistence of the Latent Expected Returns from Alternative Simulation Examples

We study the performance of our MCMC sampler scheme for the multiscale time series model through simulation
examples. Panel A displays the posterior mean ACF of the filtered expected returns at monthly frequency (blue
line with diamond markers), together with the corresponding credibility intervals (dashed blue lines). The true
data generating process consists of latent AR(1) such that the revised distribution is consistent across scales, i.e.
q(z1:nz ) = p(z1:nz ). Panel B displays instead the ACF of the filtered expected returns aggregated at monthly
frequency (blue line with diamond markers), when the true data generating process consists of a multi-scale
process built from coarse to fine levels of resolution, namely where p(x1:nx), q(z1:nz ), and p (z1:nz |x1:nx) are
inconsistent to each other.
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Figure 6. Posterior Distributions of the Parameters for Expected Returns

Posterior summaries for expected returns. This figure reports the posterior distributions of the parameters for the latent expected returns extracted by using jointly
the annual consumption-wealth and the four-year log dividend-price ratios. Top left (right) panel shows the posterior distribution of the between-levels uncertainty
measure for the log dividend-yield (cay). Bottom left panel shows the posterior distribution of the auto-regressive parameters φx. Bottom right panel shows the posterior
distribution of the conditional variance σ2

x. The blue line with diamond markers shows the posterior distribution obtained from our benchmark prior specification. The
light-blue squared and red-circled lines represent the posterior distribution obtained under tighter prior on either high or low persistence. Finally, the green-dashed line
reports the results obtained for an uninformative prior on low persistence. Estimates are obtained from a sample of 30,000 draws out of 50,000 simulations, storing every
other draw. The sample period is 1952:01-2013:12.
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Figure 7. Extracted Expected Returns

Estimated expected returns. This figure shows the expected returns extracted by conditioning on either the
four-year log dividend-price ratio or the one-year consumption-wealth ratio, or both predictors jointly. The blue
line with diamonds shows the posterior means of expected returns conditional on both cayt aggregated annually
(m = 12) and dpt aggregated over 4-years (m = 48). The solid line with circles shows the time series extracted by
using only the consumption-wealth ratio cayt aggregated annually (m = 12). The dashed line shows the series of
expected returns filtered from dpt only, and aggregated over 4-years (m = 48) only. Shaded areas mark the NBER
recessions. The series has been standardized. The sample period for the expected returns is 1952:01-2013:12.
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Figure 8. Persistence of Expected Returns from a Multi-scale model Vs. ARMA(2,1)

Persistence of expected returns. This figure shows the autocorrelation function of expected returns estimated
by jointly considering both the annual consumption-wealth ratio (m = 12) and the 4-year log dividend-yield
(m = 48) as predictors. Panel A displays the autocorrelation (ACF) function of expected returns at monthly
frequency (solid line with diamonds). Panel B displays the ACF function of expected returns aggregated over
one year (solid line with diamonds). Panel C displays the ACF function of expected returns aggregated over
four years (solid line with diamonds). Each Panel compares the ACF for the expected returns extracted using
information at multiple time-scales with the one of an ARMA(2,1) process (fitted to the filtered return series)
and suitably aggregated in Panel B and C.
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Figure 9. Persistence of Expected Returns Obtained from Alternative Prior Specifications

Autocorrelation functions under alternative priors. This figure reports the autocorrelation functions for alternative prior specifications of the autoregressive parameter φx

(top panel) and the conditional variance σ2
x (bottom panel) of the expected returns. Left panels show the ACFs computed from the monthly expected returns and right

panels show the ACF for their four-year aggregation. Expected returns are extracted by using jointly the annual consumption-wealth and the four-year log dividend-price
ratios. The blue line with diamond marks shows the posterior distribution obtained from our benchmark prior specification. Estimates are obtained from a sample of
30,000 draws out of 50,000 simulations, storing every other draw (see Appendix B for more details). The sample period for the expected returns is 1952:01-2013:12.

0 5 10 15 20 25 30 35 40 45
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lag

Autocorrelation function of the expected returns for alternative specifications of priors for φ
x

 

 

Expected Returns − Benchmark prior
Expected Returns − Low persistence, non−informative
Expected Returns − High persistence, more informative
Expected Returns − Low persistence, more informative
Simulated AR(1) under the benchmark prior
Theoretical ACF of an AR(1) under the benchmark prior

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

 

 

Autocorrelation function of the 4−year aggregated expected returns for alternative specifications of priors for φ
x

Expected Returns − Benchmark prior
Expected Returns − Low persistence, non−informative
Expected Returns − High persistence, more informative
Expected Returns − Low persistence, more informative
Simulated AR(1) under the benchmark prior
Theoretical ACF of an AR(1) under the benchmark prior

0 5 10 15 20 25 30 35 40 45
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lag

 

 

Autocorrelation function of the expected returns for alternative specifications of priors for σ2
x

Expected Returns − Benchmark prior
Expected Returns − Large variance, non−informative
Expected Returns − Large variance, more informative
Expected Returns − Small variance, more informative
Simulated AR(1) under the benchmark prior
Theoretical ACF of an AR(1) under the benchmark prior

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

 

 

Autocorrelation function of the 4−year aggregated expected returns for alternative specifications of priors for σ2
x

Expected Returns − Benchmark prior
Expected Returns − Large variance, non−informative
Expected Returns − Large variance, more informative
Expected Returns − Small variance, more informative
Simulated AR(1) under the benchmark prior
Theoretical ACF of an AR(1) under the benchmark prior

49



Figure 10. Persistence of expected returns: Comparison with OLS predictive regressions.

Comparison with OLS expected returns: autocorrelation functions. This figure shows the autocorrelation func-
tions of the expected returns extracted by using jointly both the annual consumption-wealth ratio (m = 12)
and the four-year log dividend-price (m = 48), in comparison to the ones implied by standard OLS predictive
regressions. The Figure displays the posterior average autocorrelation function (solid line with diamonds) along
with the 95% confidence intervals (dashed lines). We compare the autocorrelation from the multi-scale against
the one implied by the fitted values of a standard predictive regression with the log dividend-price ratio (black
line with squares), with the consumption-wealth ratio (red line with circles), and with both the log dividend-price
and the consumption-wealth ratio (green line with triangles).
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Figure 11. Forecasts from expected returns: Comparison with OLS predictive regressions.

Comparison of forecasts with OLS predictive regressions. This figure shows the forecasts of future realized
returns implied by our expected returns extracted by using jointly both the annual consumption-wealth ratio
(m = 12) and the four-year log dividend-price (m = 48), in comparison to the ones obtained by standard OLS
predictive regressions. In order to compare our estimates with OLS, the model-implied expected return process
are time-aggregated from monthly to quarterly frequency. We run simple regressions of quarterly returns onto our
extracted series, on the dividend-price ratio, and on the consumption-wealth ratio. We also consider a multiple
regression of returns onto the dividend-price ratio and the consumption-wealth ratio. The Figure displays the
mean of the fitted values (solid line with diamonds) along with the 95% confidence intervals (dashed lines). Panel
A compares our expected return series with the OLS fitted value from the log-dividend price ratio regression
(black line with squares). Panel B compares our expected return series with the OLS fitted values from the
consumption-wealth ratio (red line with circles) as well as with the fitted value from a multiple regression of
quarterly returns onto CAY and log DP (green line with triangles).
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Figure 12. Multi-scale vs AR(1)-iterated forecasts: Empirical Evidence

Comparing forecasts. This figure shows the posterior means of the filtered expected returns (blue solid line), the
demeaned log dividend-price ratio (light-blue dashed line with circles), the forecasts based on OLS estimates of an
AR(1) fitted on filtered expected returns (green line with circles), the forecasts obtained fixing the autoregressive
parameter to φx = 0.98 (red line with circles), and our multi-scale-based forecast (magenta line with circles).
Forecasts are computed as the posterior predictive mean values obtained from a sample of 30,000 draws out
of 50,000 simulations, storing every other draw (see Appendix B for more details). The sample period for the
expected returns is 1952:01-2013:12.
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Figure 13. Optimal Allocation for a Buy-and-Hold Strategy.

Optimal allocation. This figure shows the optimal asset allocation for a buy-and-hold strategy of an investor with a relative risk aversion γ = 5 and investment horizon
h = 120. The blue line with diamond markers represents the allocation obtained by using the expected returns extracted from our multi-scale time series model
conditioning on both the four-year log dividend-price (m = 48) and the annual consumption-wealth ratio (m = 12). The light-blue line with square markers is the
allocation obtained by using the expected returns extracted from the four-year log dividend-price ratio. The red-circled line represents the optimal allocation obtained by
using the expected returns extracted conditioning only on the one-year consumption-wealth ratio. The green line with squared markers represents the optimal allocation
obtained by using the observable monthly log dividend-price ratio as the only predictor. Top left (right) panel shows the results obtained by fixing the last value of
the lower-frequency predictors to their minimum (maximum) and taking the last sample value for the expected returns. Bottom left (right) shows the results obtained
by fixing both the last value of the lower-frequency predictors and the expected returns to their minimum (maximum). Estimates of the parameters and the expected
returns are obtained from a sample of 30,000 draws out of 50,000 simulations. The sample period used for parameters estimates is 1952:01-2013:12.
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Figure B.1. Posterior Distributions of the Parameters of Scale-Specific Predictors

Posterior Summaries. This figure reports the posterior distributions of the parameters for the observable scale-specific predictors, namely, the four-year log dividend-
price and the one-year consumption-wealth variable CAY introduced by Lettau and Ludvigson (2001). Top (bottom) left panel shows the posterior distribution of the
persistence parameter for the log dividend-price (consumption-wealth ratio). Right panels show the posterior distribution of the conditional variances for both predictors.
The blue line with diamond markers shows the posterior distribution obtained from our benchmark prior specification. The light-blue squared and red-circled lines
represent the posterior distribution obtained under tighter prior on either high or low persistence. Finally, the green-dashed line reports the results obtained for an
uninformative prior on low persistence. Estimates are obtained from a sample of 30,000 draws out of 50,000 simulations, storing every other draw. The sample period is
1952:01-2013:12.
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Table 1. Inference on the Coarsening Windows

Marginal likelihood validation. This table reports summary statistics about the marginal likelihood computed
from the multi-scale time series model with different specifications of the size of the coarsening window in the
linking equation (3). The marginal likelihood for each model is computed as the harmonic mean of the conditional
likelihood evaluated for each draw of the parameters from the full conditionals (see, e.g. Gelfand and Dey 1994a
and Newton and Raftery 1994). Panel A: Marginal likelihood for the multi-scale model with the log dividend-
price ratio as predictor. Panel B: Marginal likelihood for the multi-scale model with the consumption-wealth
variable CAY introduced by Lettau and Ludvigson (2001). Draws from the predictive distribution are obtained
from a sample of 30,000 draws out of 50,000 simulations (see Appendix A for details on the estimation algorithm).
The sample period is 1952:01-2013:12.

Panel A: Marginal Likelihood for zt = dpt

Predictor m = 24 m = 48

zt = dpt -69.08 -49.81

Panel B: Marginal Likelihood for zt = cayt

Predictor m = 12 m = 24

zt = cayt -96.74 -111.57
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Table 2. Parameters Posterior Estimates

This table reports summary statistics of the posterior estimates for the parameters of the observable predictors
and the filtered expected returns. The latter is extracted on the basis of the joint process for the log dividend-price
and the consumption-wealth variable CAY introduced by Lettau and Ludvigson (2001). Panel A: Posterior
summaries of the dynamics for z1:nz[j]

for j = ldp, cay. Panel B: Posterior summaries for the dynamics of the
latent expected returns x1:nx . Estimates are obtained from a sample of 30,000 draws out of 50,000 simulations.
The sample period is 1952:01-2013:12.

Panel A: Observable Predictors

Predictor Parameter Mean Median 2.5th 97.5th
zt = dpt φz 0.788 0.789 0.762 0.815

σ2
z 0.162 0.154 0.093 0.279

zt = cayt φz 0.512 0.511 0.489 0.532
σ2
z 0.640 0.627 0.461 0.885

Panel B: Latent Expected Returns

Predictor Parameter Mean Median 2.5th 97.5th
φx 0.667 0.667 0.592 0.746
σ2
x 2.401 2.362 1.683 3.371

zt = dpt λdp 0.013 0.012 0.007 0.019
zt = cayt λcay 0.427 0.421 0.301 0.573
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Table 3. Forecasting Accuracy of Future Expected Returns

Forecasting accuracy measures. This table reports summary statistics about the forecasting accuracy of future
expected returns obtained from our multi-scale time series model. The forecasting performance of the model is
compared with the forecasts obtained from a simple AR(1) fitted on the extracted expected returns, with the
forecasts obtained from a sum of two independent (at all leads and lags) AR(1) processes, and with the forecasts
obtained from an AR(1) model for which the mean is stationary and is allowed to vary stochastically over time.
The latent series of expected returns and corresponding forecasts are obtained from the joint process of the log
dividend-price and the consumption-wealth variable CAY introduced by Lettau and Ludvigson (2001). Direct
multi-step forecasts are produced monthly for an horizon of h = 48 months. For ease of exposition the table
reports the results only for the h = 12, 24, 36, 48 months. Panel A: Mean Squared Errors obtained from the
marginal predictive mean. Panel B: Log predictive scores obtained from the marginal predictive likelihood.
Draws from the predictive distribution are obtained from a sample of 30,000 draws out of 50,000 simulations,
with a thinning size of 20. The sample period is 1952:01-2013:12.

Panel A: Mean Squared Error

Forecasting Horizon (months)

Model h = 12 h = 24 h = 36 h = 48

AR(1) 2.346 4.082 4.262 4.877
Sum of two AR(1) 2.321 3.924 4.157 4.766
AR(1) with time-varying mean 3.521 4.178 4.209 4.721
Multi-scale 2.355 3.739 3.796 4.277

Panel B: Log-Predictive Score

Forecasting Horizon (months)

Model h = 12 h = 24 h = 36 h = 48

AR(1) -23.578 -27.627 -27.836 -28.434
Sum of two AR(1) -23.503 -27.327 -27.631 -28.252
AR(1) with time-varying mean -31.071 -30.369 -30.391 -30.701
Multi-scale -23.319 -26.463 -26.603 -27.158
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Table B.1. Convergence Diagnostics

The table summarizes the convergence results for the posterior draws for the parameters of the latent expected
returns extracted on the basis of the joint process for the log dividend-yield and the consumption-wealth ratio
cay introduced by Lettau and Ludvigson (2001). The sample period is 1952:01-2013:12. Estimates are obtained
from a sample of 30,000 draws out of 50,000 simulations. In order to reduce the amount of auto-correlation across
draws we keep one every other draw from the posterior and discard the rest. Panel A: Test statistics of the
Geweke (1992) convergence test for both the whole sample including burn-in (third column) and the sample of
draws excluding burn-in (last column). The asymptotic variance for the convergence test statistics is computed
from the spectral density of the series of draws evaluated at frequency zero, and by using a bandwith of 4% of the
sample sizes considered. Panel B: Effective sample size and corresponding inefficiency factor for each parameter.

Panel A: Convergence Test

Predictor Parameter All Draws w/o Burn-in
t-stat p-value t-stat p-value

φx -3.436 0.000 -1.069 0.286
σ2
x -3.932 0.000 1.881 0.062

zt = dpt λldp 12.16 0.000 0.012 0.991
zt = cayt λcay 9.919 0.000 -1.331 0.182

Panel B: Effective Sample Size

Predictor Parameter Effective Sample Size Inefficiency Factor

φx 836.2 59.79
σ2
x 1,040 48.17

zt = dpt λldp 796.4 62.78
zt = cayt λcay 822.8 60.77
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Appendix

A Forecasting within the multiscale framework

We want to show that conditional on x1:nx at the fine level and on the future observation znz+1 at the coarse

level, the future observations at the fine level xnx+1:nx+m are independent of the observations at the fine level

up to time nx − 1 and of the observations at the coarse level up to time ny.

First, we use the fact that q(x1:nx | z1:nz , φx, σ
2
x, λ) = p(x1:nx | z1:nz , φx, σ

2
x, λ) , the conditional distribution

of the fine level given the coarse level is not revised by Jeffrey’s rule:41

q(x1:nx | y1:ny ) = p(x1:nx | z1:nz )

∝ p(z1:nz | x1:nx)p(x1:nx)

∝ p(x1)

[
nx∏

i=2

p(xi | xi−1)

]

︸ ︷︷ ︸

=p(x1:nx )

×

[
nz∏

j=1

p(zj | xmj−m+1:mj)

]

︸ ︷︷ ︸

=p(z1:nz |x1:nx )

(⋆)

where we use the Markovian structure of x to write p(x1:nx) as a product of p(xi | xi−1).
42

Therefore

p(xnx−m+1:nx | z1:nz , x1:nx−m) =
p(xnx−m+1:nx , x1:nx−m | z1:nz )

p(x1:nx−m | z1:nz )

∝ p(x1:nx | z1:nz )

Now using Eq.(⋆), and disregarding all the terms x1:nx−m (i.e. considering only those xis for i ≥ (nx −m+ 1))

we finally have that:

p(xnx−m+1:nx | z1:nz , x1:nx−m) ∝

[
nx∏

i=nx−m+1

p(xi | xi−1)

]

× [p(znz | xnx−m+1:nx)]

i.e.

p(xnx−m+1:nx | z1:nz , x1:nx−m) = p(xnx−m+1:nx | znz , xnx−m)

By mathematical induction one has that

p(xnx+1:nx+m | z1:nz+1, x1:nx) = p(xnx+1:nx+m | znz+1, xnx)

Specifying this expression to the case when the multiscale model is constructed with AR(1) building blocks, one

obtains Eq.(10) in the main text.

B The Gibbs sampler

A major aspect of our model is that conditional on the latent expected returns x1:nx , the dynamics of predictors

corresponding to different levels of resolution and the predictive regression are conditionally independent, greatly

simplifying the sampling scheme for the joint posterior distribution of the parameters. In order to find a Bayesian

estimation of the parameters and the latent hidden resolution process we follow a data augmentation principle

which relies on the complete likelihood function, that is the product of the data and hidden processes, given the

structural parameters. In this section we first specify the prior structure, which is mostly conjugate, and then

we provide a detailed explanation of the posterior simulation.

41The steps here mimic the proof of Theorems 11.7 and 11.8 Ferreira and Lee (2007).
42If the building block is an AR(2) instead of an AR(1) we are going to re-define x̃nx = [xnx−1 xnx ] to

accommodate a first order Markov process. Analogously for higher order ARMA(p,q) processes.
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B.1 Prior specification

For the Bayesian inference to work, we need to specify the prior distributions for the model parameters. For a

given xt, t = 1, ..., nx the prior structure is conjugate. As far as the dynamics of the observable scale-specific

predictors z1:nz is concerned, we start from a standard conjugate normal-inverse-gamma-2 independent prior on

the persistence parameter and the conditional variance

φz ∼ N (mφz ,Mφz ) , σ2
z ∼ IG (νσz/2, νσzsσz/2)

with mφz ,Mφz the location and scale hyper-parameters of the AR(1) coefficient, and νσz , νσzsσz the degrees

of freedom and scale hyper-parameters for the conditional variance σ2
z . Notice that, by using two conditionally

orthogonal low-frequency forecasting variables does not change our prior specification for θz =
(
φz, σ

2
z

)
as draws

from the posteriors will be sampled independently across scales. Similarly, for the fine level process we start from

a classic independent normal-inverse-gamma-2 prior on the persistence parameter and the conditional variance

φx ∼ N (mφx ,Mφx) , σ2
x ∼ IG (νσx/2, νσxsσx/2)

with mφx ,Mφx the location and scale hyper-parameters of the AR(1) coefficient, and νσx , νσxsσx the degrees of

freedom and scale hyper-parameters for the conditional variance σ2
x. As far as the between scales uncertainty is

concerned we specify a standard inverse-gamma-2 prior;

λ ∼ IG (νλ/2, νλsλ/2) , (A.15)

νσλ
, νσλ

sσλ
the degrees of freedom and scale hyper-parameters for the conditional variance for the uncertainty

between levels λ. Finally, given the independence with observable predictors, and conditional on the expected

returns, for the predictive regression we specify a conjugate independent Normal-Inverse-Gamma-2 prior struc-

ture;

α, β ∼ N (mβ ,Mβ) , σ2 ∼ IG (νβ/2, νβsβ/2) ,

with mβ ,Mβ the location and scale hyper-parameters of the regression coefficients, and νβ , νβsβ the degrees of

freedom and scale hyper-parameters for the conditional variance if the idiosyncratic error σ2. Notice that, the

functional form of the predictive regression does not change across different investment horizons. In that respect

the prior structure is not scale-specific.

B.2 Posterior simulation

Although we use a conjugate prior setting, the joint posterior distribution of structural parameters and the latent

expected returns is not available in closed form. In order to draw from the posterior distribution we follow a

data augmentation principle which relies on the complete likelihood function (e.g. Tanner and Wong 1987). Let

expected returns consist of nx observations x1:nx , and the observable scale-specific predictors consist of nz[j]

observations z
j
1:nz[j]

for j = 1, 2, ..., K scale-specific predictors. Stock excess returns are assumed observable at

the same frequency of latent expected returns and defined as y1:ny .
43 The collection of parameters is defined

as θ =
(
α, β, σ2, φx, σ

2
x,λ,φz,σ

2
z

)
with λ = (λ1, · · · , λK), φz =

(
φz[1], · · · , φz[K]

)
and σ2

z =
(
σ2
z[1], · · · , φz[K]

)
.

Given the AR(1) dynamics imposed at different scales, and the corresponding linking equation, the complete

likelihood can now be defined as

p
(
y1:ny ,x1:nx , z1:nz |α, β, φx, λ, σ

2, σ2
x

)
= p

(
y1:ny |x1:nx , α, β, σ

2) p
(
z1:nz ,x1:nx |φx, λ, σ

2
x

)
,

= p
(
y1:ny |x1:nx , α, β, σ

2) p
(
x1:nx |z1:nz , φx, λ, σ

2
x

)
q
(
z1:nz |φz, σ

2
z

)
,

43Assuming stock returns and the expected returns are on the same scale in the initial predictive regression
does not represent a limit of the model. In fact, our modeling setting is general and the estimation procedure
can be easily adapted. The reason why we keep consistency in the scales for stock excess returns and investors’
expectations is to gain interpretability in comparison to existing research on predictability and optimal portfolio
allocation (see, e.g. Barberis 2000 and Pastor and Stambaugh 2009).
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with z1:nz =
(

z11:nz[1]
, · · · , zK1:nz[K]

)

the set of observable predictors at different scales, and q
(
z1:nz |φz,σ

2
z

)
=

∏K
j=1 q

(

z
j
1:nz[j]

|φz[j], σ
2
z[j]

)

that derives from the scale-specific AR(1) dynamics of zj1:nz[j]
which is super-imposed

on expected returns. Consistency across distributions is ensured by the Jeffrey’s rule on conditioning information

(see Jeffrey 1957, Jeffrey 1965 and Diaconis and Zabell 1982 for more details).

A major aspect of our model is that conditional on the hidden fine scale x1:nx , the observable coarse scale

and the predictive regression are conditionally independent, greatly simplifying the sampling scheme for the

joint posterior distribution of the parameters. The full conditional distribution of the parameters for the scale

dependent predictive regression is defined as;

p
(
α, β, σ2|y1:ny ,x1:nx

)
∝ p

(
y1:ny |x1:nx , α, β, σ

2) p
(
α, β, σ2) , (A.16)

while for the parameters of the fine scale and linking equation the full conditional can be written as

p
(
φx, σ

2
x, λ|z1:nz ,x1:nx

)
∝ p

(
x1:nx |z1:nz , φx, λ, σ

2
x

)
p
(
φx, σ

2
x, λ
)
,

=
p
(
z1:nz |x1:nx , φx, σ

2
x, λ
)
p
(
x1:nx |φx, σ

2
x

)

p (z1:nz |φx, σ2
x, λ)

p
(
φx, σ

2
x, λ
)
, (A.17)

Finally, given the conditional independence across scales, the parameters of the observable coarse level can be

sampled from the following distribution

p
(
φz, σ

2
z |z1:nz

)
∝ q

(
z1:nz |φz, σ

2
z

)
p
(
φz, σ

2
z

)
,

The parameters for both the predictive regression and the dynamics of z1:nz can be easily updated using stan-

dard conjugate priors. Posterior simulation is implemented through a Gibbs sampler algorithm (Geman and

Geman 1984). We propose a collapsed multi-move Gibbs sampling algorithm (see e.g. Roberts and Sahu 1997,

Casella and Robert 2004, Ferreira et al. 2006 and Ferreira and Lee 2007), where expected returns and the param-

eters are sampled in blocks. More specifically we combine forward filtering backward sampling (see Frühwirth-

Schnatter 1994 and Carter and Kohn 1994) to extract the expected returns from scale-heterogenous forecasting

variables, a Metropolis-Hasting step for direct inference on a set of parameters for which conjugacy is not ob-

tainable and standard Bayesian updating for the parameters of the predictive regression and the observable

scale-specific predictors. At each iteration the Gibbs sampler sequentially cycles through the following steps:

1. Draw x1:nx conditional on σ2
x, φx, λ, and z1:nz .

2. Draw σ2
x conditional on φx, λ, z1:nz , x1:nx .

3. Draw φx conditional on σ2
x, λ, z1:nz , x1:nx .

4. Draw λj conditional on σ2
x, φx, z

j
1:nz[j]

, x1:nx for j = 1, · · · ,K.

5. Draw σ2
z[j] conditional on φz[j], and z

j
1:nz[j]

for j = 1, · · · ,K.

6. Draw φz[j] conditional on σ2
z[j], and z

j
1:nz[j]

for j = 1, · · · ,K.

7. Draw σ2 conditional on y1:ny , x1:nx , α and β.

8. Draw α, β conditional on y1:ny , x1:nx , and σ2.

Steps 7-8 are collapsed since α, β, σ2 are conditionally independent on z1:nz conditioning on latent expected

returns x1:nx . In order to reduce the amount of auto-correlation across draws we keep one every other draw from

the posterior and discard the rest.

Step 1. Drawing the expected returns

To draw the time series of expected returns we use a forward filtering, backward sampling (FFBS) estimation

scheme (see Carter and Kohn 1994, Frühwirth-Schnatter 1994 and West and Harrison 1997 for more details).

Although the marginal distribution of the scale-specific predictors is substituted by q
(
z1:nz |φz, σ

2
z

)
, we can exploit

the linkage equation (3) to extract expected returns on observable predictors. More precisely, we can rewrite (1)-

(3) as a states-space model in which scale-specific predictors characterize the observables equation and investors’
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expectations are latent. For the ease of exposition we write the recursion for K = 2, any generalization to K > 2

would readily apply;

zs = Fxs + ǫz,s, ǫz,s ∼ N (0,Σzz) ,

xs = Gxs−1 + ǫx,s, ǫx,s ∼ N (0,Σxx) , (A.18)

where zs =
(
zs[1], zs[2]

)
, x′

s =
(
x(s−1)m+1, ..., xsm

)
, Σxx,ij = σ2

xφ
|i−j|
x

(

1− φ
2min(i,j)
x

)

/
(
1− φ2

x

)
, Σzz = diag (τ1, τ2)

and

G =










0 · · · 0 φx

0 · · · 0 φ2
x

...
...

...

0 · · · 0 φm
x










, F =

(

m−1ιm

Im/m1
⊗m−1

1 ιm1

)

,

with m > m1 the window of coarsening non-overlapping averages for the two observable predictors, Im/m1
an

identity matrix of size m/m1 ∈ R and ιm an m-dimensional vector of ones. For identification purposes, exogenous

across scale-specific predictors and expected returns are uncorrelated to each other;






ǫz[1],s

ǫz[2],s

ǫx,s




 ∼ N (0,Σ) , with Σ =






τ1 0 0

0 τ2 0

0 0 Σxx




 (A.19)

with τj = λj (F
′VxF )jj I with I as the nz[1]−square identity matrix and λj measuring the between resolutions

uncertainty between predictor at the scale j and expected returns.

Filtering

The first stage follows a standard Kalman filtering recursion. Define the cumulative information about the

predictor at the scale s as Ds = Ds−1 ∩ {zs}, s = 1, ..., nz, and the conditional moments as

as = E [xs|Ds−1] , fs = E [zs|Ds−1] , ms = E [xs|Ds] ,

Rs = V ar [xs|Ds−1] , Qs = V ar [zs|Ds−1] , Cs = V ar [xs|Ds] ,

Conditioning on the parameters is assumed throughout the description of the FFBS setting but is omitted for

the ease of exposition. We impose an uninformative initial prior x0|D0 ∼ N (m0, C0) with m0 = 0m×1 an

m−dimensional vector of zeros, and C0 = 1000Im the prior covariance matrix. At time s = 1 the filtering

recursion starts with a propagation step

x1|D0 ∼ N (a1, R1) ,

with

a1 = E [x1|D0] = GE [x0|D0] = Gm0,

R1 = V ar [x1|D0] = GV ar [x0|D0]G
′ +Σxx = GC0G

′ +Σxx .

The second prediction step for the observables is defined as

z1|D0 ∼ N (f1, Q1) ,

with

f1 = E [z1|D0] = E [Fx1|D0] = FE [x1|D0] = Fa1,

Q1 = V ar [z1|D0] = FR1F
′ +Σzz .
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The last step is updating the beliefs once information about predictors is available at time s = 1. The filtering

distribution is defined as

x1|D1 ∼ N (m1, C1) ,

with

m1 = E [x1|D1] = a1 +A1e1,

C1 = V ar [x1|D1] = R1 −A1Q1A
′
1,

where the Kalman gain A1 = R1F
′Q−1

1 , and e1 = z1−f1. Continuing in this fashion, we find that all conditional

densities are normally distributed, and we obtain all the required moments for s = 2, ..., ny:

as = Gms−1,

Rs = GCs−1G
′ +Σxx,

fs = Fas,

Qs = FRsF
′ +Σzz,

ms = as +Ases,

Cs = Rs −AsQsA
′
s,

As = RsF
′Q−1

s ,

es = zs − fs,

Sampling

We want to draw the hidden states xs, s = 1, · · · , nz conditional on the available information Dnz for the long-run

predictor. The backward-sampling approach relies on the Markov property of the evolution of the underlying

state

p (x0,x1, · · · ,xnz |Dnz ) = p (xnz |Dnz ) p (xnz−1|xnz , Dnz−1, ) · · · p (x0|x1, D1, ) ,

We first sample xnz from p (xnz |Dnz ) from the last step of the Kalman filtering above. Then, from s = nz −

1, nz −2, · · · , 1, 0, we sample xs from the conditional density p (xs|xs+1, Ds, ). To obtain the backward recursion,

first recall that

xs|Ds−1 ∼ N (as, Rs) , with as = Gms−1, and Rs = GCs−1G
′ +Σxx,

and

xs|Ds ∼ N (ms, Cs) , with ms = as +Ases, and Cs = Rs −AsQsA
′
s,

where As = RsF
′Q−1

s ,, and es = zs − fs. Then the backward recursion can be defined as

xs|xs+1, Ds ∼ N (hs, Hs) , (A.20)

with

hs = ms +Bs (xs+1 − as+1) ,

Hs = Cs −BsRs+1B
′
s,

and Bs = CsG
′R−1

s+1 (see West and Harrison 1997, Chapter 4, for additional details).
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Step 2 and 3. Sampling the parameters for the expected returns

The parameters of the fine level and the link equation can not be generated by standard Bayesian updating as

priors are not conjugate and posterior distributions are not available in closed form for sampling. To overcome

this problem we approximate the posterior samples using Metropolis-Hastings (MH) proposals. Once a proposal

is generated, the full conditional (A.17) is used to compute the acceptance probability.

For the simulation step g = 1, ..., G, the proposal for σ2
z is generated from a uniform distribution σ

2(m)
z ∼

U
(

σ
2(m−1)
z /δσz , σ

2(m−1)
z · δσz

)

where δσz > 1 is a tuning parameter that must be fixed to ensure a good trade-off

between the convergence of the Markov chain and the ability of the algorithm to search within the parameter

space. The acceptance probability is computed as

π
(

σ2(g)
x , σ2(g−1)

x

)

= min



1,
σ
2(g−1)
x p

(

z1:nz |x1:nx , φ
(g−1)
x , λ(g−1), σ

2(g)
x

)

p
(

x1:nx |φ
(g−1)
x , σ

2(g)
x

)

p
(

σ
2(g)
x

)

σ
2(g)
x p

(

z1:nz |x1:nx , φ
(g−1)
x , λ(g−1), σ

2(g−1)
x

)

p
(

x1:nx |φ
(g−1)
x , σ

2(g−1)
x

)

p
(

σ
2(g−1)
x

) ×

×
p
(

z1:nz |φ
(g−1)
x , λ(g−1), σ

2(g−1)
x

)

p
(

z1:nz |φ
(g−1)
x , λ(g−1), σ

2(g)
x

)



 ,

= min



1,
σ
2(g−1)
x IG

(

σ
2(g)
z |ν∗

σx
/2, ν∗

σx
s∗σx

/2
)

p
(

z1:nz |φ
(g−1)
x , λ(g−1), σ

2(g−1)
x

)

σ
2(g)
x IG

(

σ
2(g−1)
z |ν∗

σx
/2, ν∗

σx
s∗σx

/2
)

p
(

z1:nz |φ
(g−1)
x , λ(g−1), σ

2(g)
x

)



 ,

with

ν∗
σx

= νσx + nx + nz − 1,

ν∗
σx

s∗σx
= νσxsσx +

nx∑

i=2

(

xi − φ(g−1)
x xi−1

)2

+ (z1:nz − Fx1:nx)
′ (z1:nz − Fx1:nx) /τ

(g−1)′

with nz = nz[1]+nz[2], τ = (τ1, τ2), νσλ
, νσλ

sσλ
the degrees of freedom and scale hyper-parameters of an Inverse-

Gamma distribution. The marginal probability p
(
z1:nz |φx, λ, σ

2
x

)
can be efficiently evaluated by using the Kalman

filter recursion proposed in Step 1 above. In fact, p
(
z1:nz |φx, λ, σ

2
x

)
=
∏nz

s=1 p
(
zs|zs−1, φx, λ, σ

2
x

)
. To ensure

stationarity, the proposal for the AR(1) parameter of the hidden fine scale process must have probability mass

entirely inside the unit circle. We generate a proposal φ
(g)
x ∼ U

(

max
(

−1, φ
(g−1)
x − δφx

)

,min
(

1, φ
(g−1)
x + δφx

))

where δφx has to be tuned to ensure convergence and effectiveness in the posterior approximation. The acceptance

probability is computed as

π
(

φ(g)
x , φ(g−1)

x

)

= min



1,
φ
(g−1)
x p

(

z1:nz |x1:nx , φ
(g)
x , λ(g−1), σ

2(g)
x

)

p
(

x1:nx |φ
(g)
x , σ

2(g)
x

)

p
(

φ
(g)
x

)

φ
(g)
x p

(

z1:nz |x1:nx , φ
(g−1)
x , λ(g−1), σ

2(g)
x

)

p
(

x1:nx |φ
(g−1)
x , σ

2(g)
x

)

p
(

φ
(g−1)
x

) ×

×
p
(

z1:nz |φ
(g−1)
x , λ(g−1), σ

2(g)
x

)

p
(

z1:nz |φ
(g)
x , λ(g−1), σ

2(g)
x

)



 ,

= min



1,
φ
(g−1)
x p

(

z1:nz |x1:nx , φ
(g)
x , λ(g−1), σ

2(g)
x

)

N
(

φ
2(g)
x |m∗

φx
,M∗

φx

)

φ
(g)
x p

(

z1:nz |x1:nx , φ
(g−1)
x , λ(g−1), σ

2(g)
x

)

N
(

φ
2(g−1)
x |m∗

φx
,M∗

φx

)

×
p
(

z1:nz |φ
(g−1)
x , λ(g−1), σ

2(g)
x

)

p
(

z1:nz |φ
(g)
x , λ(g−1), σ

2(g)
x

)



 ,

The conditional likelihood in both the numerator and the denominator is computed numerically. The hyper-

parameters of the truncated Gaussian are updated as

M∗
φx

=
(

M−1
φx

+ x
′
1:nx

x1:nx/σ
2(g)
x

)−1

, m∗
φx

= M∗
φx

(

M−1
φx

mφx + x
′
1:nx−1x2:nx/σ

2(g)
x

)−1
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Step 4. Sampling the between-scales uncertainty

The parameter λj has the natural interpretation in terms of the relative increase in uncertainty due to lack of

agreement between the jth scale-specific observable predictor and investors’ expectations. Let Fj correspond to

the block of F specific to the jth predictors, the between-scales uncertainty nature of λj can be seen from the

marginal distribution p
(

zj1:nz[j]

)

= N
(
0, FjVxF

′
j + λjFjVxF

′
j

)
. The parameter λj enters in the model dynamics

in highly non-linear and complicated. Luckily we can exploit its relationship with the parameters of the expected

returns since, conditional on φx and σ2
x, λj can be directly recovered from τj = λj

(
FjVxF

′
j

)

11
. For the simulation

step g = 1, ..., G, we generate a proposal λ
(g)
j ∼ U

(

max
(

0, λ
(g−1)
j − δλ

)

,min
(

10, λ
(g−1)
j + δλ

))

where δλ has to

be tuned to ensure convergence and effectiveness in the posterior approximation. Given the simulated parameters

of the fine level at the gth iteration, such proposal implies a given τ
(g)
j = λ

(g)
j

(

FjV
(g)
x F ′

j

)

11
with

{

V
(g)
x

}

ij
=

σ
2(g)
x φ

|i−j|(g)
x /

(

1− φ
2(g)
x

)

. The acceptance probability is computed as

π
(

λ
(g)
j , λ

(g−1)
j

)

= min



1,
τ
(g−1)
j p

(

z
j
1:nz[j]

|x1:nx , φ
(g)
x , λ

(g)
j , σ

2(g)
x

)

p
(

τ
(g)
j

)

τ
(g)
j p

(

z
j
1:nz[j]

|x1:nx , φ
(g)
x , λ(g−1), σ

2(g)
x

)

p
(

τ
(g−1)
j

) ×

×
p
(

z
j
1:nz[j]

|φ
(g)
x , λ

(g−1)
j , σ

2(g)
x

)

p
(

z
j
1:nz[j]

|φ
(g)
x , λ

(g)
j , σ

2(g)
x

)



 ,

= min



1,
τ
(g−1)
j IG

(

τ
(g)
j |ν∗

λj
/2, ν∗

λj
s∗λj

/2
)

p
(

z
j
1:nz[j]

|φ
(g)
x , λ

(g−1)
j , σ

2(g)
x

)

τ
(g)
j IG

(

τ
(g−1)
j |ν∗

λj
/2, ν∗

λj
s∗λj

/2
)

p
(

z
j
1:nz[j]

|φ
(m)
x , λ

(g)
j , σ

2(g)
x

)



 ,

with

ν∗
λj

= νλj
+ nz[j] − 1,

ν∗
λj
s∗λj

= νλj
sλj

+
(

z
j
1:nz[j]

− Fjx1:nx

)′ (

z
j
1:nz[j]

− Fjx1:nx

)

,

Notice that the independence across scales allows to simply compute λ
(g)
j separately for j = 1, ..., K by updating

posterior on the basis of predictor-specific shocks zj1:nz[j]
− Fjx1:nx .

Step 5 and 6. Sampling the parameters for scale-specific predictors

For the observable scale-specific predictors, updating is generally simple as priors are conjugate. For example, if

the coarse level follows an ARMA process then the coarse level parameters can be generated with the procedure

proposed by Chib and Greenberg (1994). In the case of an AR(1) the full conditional distribution is readily

available by standard Bayesian updating. Given the priors specified above (need to specify priors) posterior

draws for each predictor j = 1, ...,K are defined by;

φz[j]|σ
2
z[j], z

j
1:nz[j]

∼ N
(

m∗
φz[j]

,M∗
φz[j]

)

, σ2
z[j]|φz[j], z

j
1:nz[j]

∼ IG
(

ν∗
φz[j]

/2, ν∗
φz[j]

s∗φz[j]
/2
)

,

with

M∗
φz[j]

=
(

M−1
φz[j]

+ σ−2
z[j]z

j′
1:nz[j]−1z

j
1:nz[j]−1

)

, m∗
φz[j]

= M∗
φz[j]

(

M−1
φz[j]

mφz[j]
+ σ−2

z[j]z
j′
1:nz[j]−1z

j
2:nz[j]

)

,

ν∗
φz[j]

= νφz[j]
+ nz[j] − 1, ν∗

φz[j]
s∗φz[j]

= νφz[j]
sφz[j]

+

nz[j]
∑

i=2

(
zi[j] − φz[j]zi−1[j]

)2
,

The functional form of the posterior does not change if we consider N independent observable scale processes.

Independence across scales allows to update separately each posterior. As such, we can generate scale-dependent

posterior distribution for the autoregressive coefficients.
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Step 7 and 8. Sampling the Parameters for the Predictive Regression

Conditional on the expected returns, the parameters of the predictive regression can be sampled independently

by using standard conjugate analysis. For the simple case of a one-month investment horizon the full conditional

distributions for the parameters take the form

α, β|σ2,y1:ny ,x1:nx ∼ N
(
m∗

β ,M
∗
β

)
, σ2|α, β,y1:ny ,x1:nx ∼ IG

(
ν∗
β/2, ν

∗
βs

∗
β/2
)
,

with

M∗
β =

(
M−1

β + σ−2
X

′
X
)
, m∗

β = M∗
β

(
M−1

β mβ + σ−2
X

′
y2:ny

)
,

ν∗
β = νβ + ny − 1, ν∗

βs
∗
β = νβsβ +

ny∑

i=2

(yi − α− βxi−1)
2 ,

with X = [ι,x1:nx−1] and ι an (nx − 1)-dimensional vector of ones. The functional form of the posterior does

not change with the investment horizon. However, the updated hyper-parameters will differ given different scales

imply different information. As such, we can generate scale-dependent posterior distribution for both intercepts

and betas.

C Prior sensitivity analysis for the scale-specific predictors

In this section we report the posterior estimates for the parameters of the scale-specific predictors computed by

using the alternative prior specifications outlined in Section 4. Figure B.1 shows the results. The left panel shows

the posterior distributions for the persistence parameters. The blue line with diamond markers shows posterior

estimates computed from the benchmark marginal prior which entails high persistence with a low degree of

confidence. The location of the prior does not play a significant role. In fact, imposing a dispersed prior with

low persistence (dashed green line) does not change posterior estimates.

[Insert Figure B.1 about here]

On the other hand, if one has strong reasons to believe that predictors show the same level of persistence across

scales, posterior estimates deviate from the non-informative case, although in an economically negligible way.

In particular, the difference between posterior means in the non-informative and informative cases equals to

0.05 for the log dividend-price, and 0.10 for the consumption-wealth ratio. Importantly, such differences do not

imply dramatic changes in the autocorrelation structure of the predictors. As far as the conditional variances

are concerned, the right panel shows that, under alternative priors, posterior distributions cannot be sensibly

distinguished, although for the one-year predictor cayt a highly confident prior on low volatility has a relevant

effect on the posterior.

D MCMC convergence analysis

In order to effectively claim that our MCMC simulation make a good representation of the true joint distribution

of the parameters we must rely on the assumption that draws from the full conditionals converge to samples

obtained from the true distribution. This motivates the use of convergence diagnostics that aims at investigate

the ergodic properties of the draws from the MCMC. In this section we report the results of a convergence analysis

based on sub-samples of draws from the full conditionals (see Geweke 1992, Raftery and Lewis 1992 and Cowles

and Carlin 1996 for more details). As a main test we compare the location of the sampled parameter on two

different intervals across the chain. The underlying idea is that if the mean values of the parameter across two

distant sub-samples of the Markov chain have similar locations in the state space, we can assume that draws

from these sub-samples come from the same distribution. If values of the parameter θ(i) are computed after each

iteration of the Gibbs sampler, then the sequence of simulated values can be seen as a time series. Geweke (1992)

suggests that the nature of the MCMC process imply the existence of a spectral density Sθ (0) for such sequence
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that has not discontinuity at frequency zero. If this assumption is met, then the estimator for E [θ];

θ̂ =
1

M

M∑

i=1

θ(i),

has asymptotic variance equal to Sθ (0) /M . Let us consider two sub-samples of the Markov chain as A =

{i; 1 ≤ i ≤ MA}, B = {i;MB ≤ i ≤ M}. The sample specific estimators for the expected value of θ are defined

as

θ̂A =
1

MA

∑

i∈A

θ(i), θ̂B =
1

M −MB + 1

∑

i∈B

θ(i),

Geweke (1992) convergence diagnostic after M iterations is calculated by taking the difference θ̂A − θ̂B and

dividing by the asymptotic standard error of the difference. If the ratios MA/M and MB/M are held fixed and

1 < MA < MB < M and MA+MB < M , then by central limit theorem, the distribution of this ratio approaches

a standard Normal as M tends to infinity;

Zn =
θ̂A − θ̂B

√
1

MA
ŜA
θ (0) + 1

M−MB+1
ŜB
θ (0)

−→ N (0, 1) for M −→ ∞,

with ŜA
θ (0) and ŜB

θ (0) the estimated asymptotic variance for θ̂A and θ̂B , respectively. Geweke (1992) suggests

to take MA = .1M and MB = .5M . The null hypothesis that the chain is converging is rejected if |Zn| is large.

Panel A of Table B.1 shows the results obtained by either including or excluding the initial burn-in sample. This

is done to check convergence after the initial M⋆ = 20, 000 draws are discarded. Notice we report the results

of the parameters for the expected returns as posterior can be derived analytically and does not required, by

definition, convergence diagnostics.

[Insert Table B.1 about here]

In computing the asymptotic variance we use a bandwith of 4% of the sample sizes considered. As we would

expect without disregarding the initial burni-in sample the null hypothesis of convergence is strongly rejected for

all parameters. By excluding an initial pre-sample of 20,000 draws convergence is reached. The null hypothesis of

convergence cannot be rejected at the 10% significance level for both the persistence parameter and the between-

levels uncertainty, while cannot be rejected at the 5% for the conditional variance of expected returns. All in all,

convergence diagnostics show that after disregarding the burn-in sample we can sensibly assume that draws from

the full conditional are a safe approximation of the true underlying distribution. For the sake of completeness

we also compute the Effective Sample Size (ESS henceforth). The latter tells us how much information can

we actually use to estimate a single parameter, given the properties of the Markov chain. Indeed, if there is

correlation between successive draws of θ(i), then we might expect that our sample of draws has not revealed as

much information of the posterior distribution of the parameter as we could have had by having i.i.d. draws. Let

ρk = corr
(

θ(i), θ(i−k)
)

be the correlation between two draws of the same chain at distance k > 1, then the ESS

can be computed as;

MEFF =
M

1 + 2
∑∞

k=1 ρk
,

In all our estimates we reduce the amount of correlation by keeping one every other draw from the posterior

distribution and discard the rest. As a by-product of the EFF we can compute the inefficiency factor, which

simply consists of the denominator in MEFF above, and measures how far posterior draws are far from an i.i.d.

sample. Panel A of Table B.1 shows the values for the ESS and the inefficiency factor for the 30,000 retained

draws out of 50,000 simulations. Not surprisingly, last column shows that posterior draws are far from being i.i.d.

Despite thinning of the chain, the auto-correlation of the draws is still quite high. However, the ESS is sufficiently

high to provide sensible estimates of the model parameters. For instance, our estimation algorithm guarantees

that we have more than 800 meaningful draws to estimate the posterior mean of the persistence parameter φx.
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