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Abstract

We develop a Bayesian analysis for the nowcasting and forecasting of turning
points in the business cycle using large-dimensional mixed-frequency dynamic factor
models for which the means of the latent factors are subject to Markov-switching.
The key novelty in the analysis is our model-based treatment of the dynamics in
a mixed-frequency data set. In particular, we propose a coincident index based
on a quarterly measure of real gross domestic product and on the four monthly
economic variables that are commonly used to track the business cycle. We present
in-sample and real-time recessions probabilities for the U.S. economy. We show that
the inclusion of a quarterly measure significantly improves the real-time estimates
of turning points when the NBER recession dates are assumed correct.

1 Introduction

It is of key importance for any economic policy maker to have an accurate and promptly
indication of the current economic situation and to have a short-tem forecast for the
direction of economic activity. The information is even more valuable when a probability
can be provided for an upcoming economic recession. It is not surprising that, after the
recent financial and credit crises, new research interest has emerged on the improvement of
such indicators and forecasts in the econometric literature. It coincides with the surge of
data technology so that many more data sets have become available for empirical research.

However, as pointed out by Hamilton (2011), when dealing with real-time data, the
continuous changes in the economic relationships and the existence of subsequent data
revisions, transforms the question of tracking the business cycle in a very challenge and
difficult task. Of course, when trying to predict the evolution of the economy, character-
izing the business cycles is crucial. The seminal work of Burns and Mitchell (1946) is,
therefore, a good starting point where many economist have stood. Two key features of
the business cycles are highlighted there: co-movements among economic series and the
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non-linear behaviour of the economy between recession and expansion periods. Stock and
Watson (1989, 1991, 1993) handle the first characteristic by proposing a dynamic factor
model able to capture unobserved co-movements between economic time series. The sec-
ond feature was approached by Hamilton (1989) through a univariate two-state regime
Markov-switching model where the evolution of the GDP is split between recession and
expansion phases. Handling both characteristics within a single unified model was first
proposed by Diebold and Rudebusch (1996) and accomplished by both Chauvet (1998)
and Kim and Nelson (1998) adopting a multivariate dynamic factor Markov-switching
(DFMS) model. However, those models do not included real GDP measures among the
economic variable indicators used. The importance of GDP when analyzing the business
cycles was highlighted by Stock and Watson (1999) whom stated that “fluctuations in
aggregate output are at the core of the business cycle, so the cyclical component of real
GDP is a useful proxy for the overall business cycle”. Following this concern, Cama-
cho et al. (2012) extends the DFMS model in order to deal with mixing frequencies and
incorporate the very important publicly available information of real GDP.

In the present paper, we base on Camacho et al. (2012) and we propose an alternative
way of estimation for the mixing-frequencies DFMS model which easily deals with some
of the major difficulties the mentioned authors met. Within a linear framework, Mariano
and Murasawa (2003) developed a methodology which incorporates mixing-frequencies to
dynamic factor models. Their idea is that quarterly GDP series can be interpolated to
estimate the unobserved latent monthly GDP through a filtering algorithm. As mentioned
by Camacho et al. (2012), extending their framework to the non-linear case brings the
“curse of dimensionality problem” since, in order to compute the likelihood for the mixing-
frequency DFMS model, 32 parallel Kalman filters have to be evaluated in the most simple
case. To solve this problem, the authors propose approximating the 32 states to a simpler
version where only 2 different states are taking into account. Through a Monte Carlo
experiment, Camacho et al. (2012) show the approximation have small effects in terms of
the quadratic probability score when the idiosyncratic variance of the quarterly indicator
is high enough.

An alternative way of dealing with mixing-frequencies in the context of a linear mul-
tivariate dynamic factor model has recently been proposed by Blasques et al. (2014). In
their work, it is shown that using a full system approach where “the higher frequency data
is stacked into a vector of observations which has the lower frequency”, it is possible to
avoid any kind of interpolation while all information incorporated at different frequencies
is fully conserved. Following their proposal, we have adapted the “stacked” model to a
non-linear framework. Under this setting we overcome the necessity of dealing with the
high number of possible paths (or states) Camacho et al. (2012) has to confront with.

A second contribution of our work is proposing a simpler way of estimating a mixing-
frequency dynamic factor model through Bayesian methods, both within a linear and
a non-linear framework. Marcellino et al. (2013) were the first in develop a Bayesian
methodology approach to a linear mixing-frequency dynamic factor model. In their set-
ting, a model similar to the one proposed by Mariano and Murasawa (2003) which incor-
porate stochastic volatility is estimated. However, their estimation procedure rely on the
possibility of estimating the variance covariance matrix of a MA(4) regression equation
where the errors follows –in turn– an AR(p) process. This difficulty must be sorted in
order to compute the factor loadings associated with low frequency variables (see Section
3.1). When the “stacking” approach is used instead, the problem is avoided since any
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missing observation exists within quarters for the case of quarterly variables. Loosely
speaking, our Bayesian approach can be viewed as an extension of Kim and Nelson (1998)
for the mixing frequency case.

Three different –but related– empirical applications for the US economy are carried on
using the model here proposed. Following the existing literature, we stands on the four
monthly coincident indicator commonly used when analyzing the US business cycles and
we add the real GDP measure to estimate our “stacked” mixing-frequency DFMS model.
The first exercise done is an in-sample estimation of the recession probabilities for the
US economy from 1959 to 2014. Comparing results of using a non-mixing and a mixing-
frequency DFMS model we found that adding the GDP data does not significantly increase
the identification of recession phases. This is in line with Camacho et al. (2014), which
indicates that when the number of high quality data already included is high enough, an
additional high quality indicator does not generate large improvements regarding business
cycle identification.

Our second exercise consist on a real-time experiment aiming to obtain which would
have been the business cycles turning points pointed out by the “stacked” mixing-frequency
DFMS model. Once again, results are compared with the non-mixing frequency case.
Moreover, we follow Camacho et al. (2012) proposal for dealing with unbalanced panel
data in the context of DFMS models and we compare the outcomes of using latest avail-
able (non-revised) data and when using a balanced panel data (revised and better quality
data). With respect to the inclusion of GDP measure among the indicators, we found
the addition means a better accuracy in the real-time distinction of turning points when
the NBER recession dates are taken as being the true ones. Using revised or non-revised
data does not affects the turning point dates we found. However, it does affects the tim-
ing when the model would have announced that a new turning point had appeared. In
general, the announcements would have been done one month in advance with respect to
balanced panel data case. This result confirms Camacho et al. (2012) findings regarding
the necessity of using latest available information when the goal is a sooner identification
of turning points.

Our last empirical exercise is a real-time nowcasting experiment where we compare
the accuracy of our model with respect to the simple AR(2) model. Our results show
using the mixing-frequency DFMS model significantly improves the nowcast accuracy
when at least one month of monthly data from the current quarter is already released
(i.e. during the second and third month of the quarter). Gains from using DFMS models
in forecasting analysis were also found in Chauvet and Potter (2012) in the non-mixing
frequency context and by Camacho et al. (2013) in the mixing-frequency one.

From a methodological and an empirical point of view, the “stacked” mixing-frequency
DFMS model appears to be a good alternative when a promptly and accurate evaluation
of the current and the short-run future state of the economy wants to be achieved.

The paper is structured as follows. In the next section we present the “stacking”
approach for the state space representation and we show how to adapt the model for
the non-linear case. In Section 3 we describe the Bayesian estimation procedure. The
empirical part of the paper is presented in Section 4 which is divided in three parts:
subsection 4.1 shows in-sample estimations, subsection 4.2 describe real-time estimation
of turning-points and subsection 4.3 is about the nowcasting exercise. Section 5 concludes.
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2 The Model

2.1 Single-Index DFMS Model

Following Chauvet (1998) and Kim and Nelson (1998), we represent co-movements among
economic variables and business cycle asymmetries within a single statistical model. In
this sense, the source of variation of any observable variable (yit) is assumed to be ex-
plained by both, an unobserved common factor (ft) and by an idiosyncratic component
(uit). Business cycles shifts are then incorporated by assuming the dynamics of ft is
affected by the unobserved regime-switching state of the economy. Under this setting,
observable variables can be represented as,

∆yit = βi(L)∆ft + uit i = 1, . . . , n (1)

where ∆yit is the log of the first difference of each observable i = 1, . . . , n1 while βi(L)
is a polynomial lag operator meaning each observable may depend on current and lagged
values of the growth rate of the unobserved common component (∆ft).

The dynamics of the model is given by,

Φf (L) (∆ft − µst) = ηt ηt
iid∼ N

(
0, σ2

η

)
(2)

Φi(L)uit = εit εit
iid∼ N

(
0, σ2

i

)
(3)

where ηt and εit are independent of each other for all t and i. Φf (L) and Φi(L) are finite
lag polynomials governing the autoregressive process’ order for the common component
(pf ) and for the idiosyncratic (pi). Business cycles shifts are introduced as a switching
mean in the factor (Φf (L)µst), which affects the dynamic of the common factor depending
not only on whether the economy is currently in a recession (St = 0) or in an expansion
phase (St = 1) but also on the lagged states St−1, . . . , St−pf

2. Transitions between those
two states of the economy are in turn described by a first-order Markov-Switching process.
Therefore,

µst = µ0 + µ1St µ1 > 0 , St = {0, 1} (4)

pij = Pr[St = j|St−1 = i]
2∑
j=1

pij = 1 ∀i (5)

where pij is the transition probability the economy moves from state i in t−1 to state j in
t. This model can be easily cast under the state-space representation and estimated using
the approximate maximum-likelihood estimation method (Chauvet (1998)) or through
Bayesian inference (Kim and Nelson (1998)) among other methods.

2.2 Incorporating mixing frequencies

2.2.1 Camacho et al. (2012)

In a recent work, Camacho et al. (2012) proposed extending a similar model to the one de-
scribed above in order to deal with mixing frequencies (monthly and quarterly variables).

1Observable variables are expressed as deviations from means.
2Chauvet (1998) assumes instead a switching intercept. In particular, equation (2) is written as

Φf (L)∆ft − µst = ηt, meaning only current state of the economy affects the common factor dynamics.
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In particular, they based on the linear mixing frequency extension of the dynamic factor
model proposed by Mariano and Murasawa (2003) where quarterly variables growth rates
(∆yqt ) are described by the geometric mean of the unobserved monthly growth rates of
the variable (∆xt). In particular,

∆yqt =
1

3
∆xmt +

2

3
∆xmt−1 + ∆xmt−2 +

2

3
∆xmt−3 +

1

3
∆xmt−4 (6)

where ∆yqt is observed every three months. As mentioned by Camacho et al. (2012),
this approximation has the main shortcoming that even in the most simpler case, where
equation (2) is replaced by ∆ft = µst + ηt, quarterly growth rates will depend on current
and lagged unobserved states St, . . . , St−4. Therefore, when the model is wanted to be
estimated by the approximate maximum-likelihood method a total of 25 different paths
have to be considered at each t. Camacho et al. (2012) proposed to approximate the
density of ∆yqt by,

f (∆yqt ) =
32∑
j=1

π∗j f (∆yqt |s∗t = j) ≈
2∑
i=1

πif (∆yqt |st = i)

where π∗j (πi) is the unconditional probability of being in the j-th (i-th) state out of the
32 (2) different states. Through a Monte Carlo study Camacho et al. (2012) showed their
estimation procedure have small effects in terms of the quadratic probability score when
the idiosyncratic variance of the quarterly indicator is high enough.

If this kind of approximation wants to be avoided, one possibility could be estimating
the proposed model through the Bayesian inference approach of Kim and Nelson (1998).
In this sense, Marcellino et al. (2013) has proposed a Bayesian estimation approach to the
linear dynamic factor model of Mariano and Murasawa (2003) which could potentially be
adapted to the non-linear framework here presented. Nevertheless, we propose a second
and more simpler alternative which is base in a different approach to the mixing-frequency
problem.

2.2.2 Stacking approach

In the present work, we adopt a different solution to the one followed by Camacho et al.
(2012). Specifically, we rely on the “stacking approach” recently proposed by Blasques
et al. (2014) to deal with mixing frequencies in the context of a linear dynamic factor
model. These authors have shown that, under the state space representation, it is pos-
sible to deal with the mixing frequencies problem by stacking the higher frequency data
(monthly) into a vector of observations which operates at the lower frequency (quarterly)
while all the high frequency information is still preserved3. Here, we extend their model
to account for non-linearities in the context of a DFMS model.

Following Blasques et al. (2014) notation, monthly variables xmτ (τ is the monthly time
index) can be stacked into a quarterly observed vector (xqt ) with quarterly time index t

3The “stacking approach” has the main advantage of avoiding the introduction of artificial missing
values when quarterly variables are not observed (two months every quarter), which is needed in Mariano
and Murasawa (2003) for estimation purposes
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of the form,

xqt =

xqt,1xqt,2
xqt,3

 =

xm3(t−1)+1

xm3(t−1)+2

xm3(t−1)+3

 (7)

where xqt,i is the i-th element of xqt , where t refers to the quarter the monthly observation
belong to and i indicates the month within the t quarter. Therefore, t = 1, . . . , T , i =
1, 2, 3 and τ = 1, . . . , 3T .

If we assume a monthly observable variable which dynamics is explained by the model
described in equations (1)-(3) (for simplicity assume βi(L) = βi and Φi(L) = 1), the
process can be described as,

∆xmτ = βx∆f
m
τ + εmτ (8)

Φf (L)
(
∆fmτ − µmsτ

)
= ηmτ (9)

where εmτ
iid∼ N (0, σ2

x) and ητ
iid∼ N

(
0, σ2

f

)
. Adding a quarterly variable ∆yt which also de-

pends on ∆fmτ and using the stacked vector representation (7) for the unobserved common
factor,
∆f qt =

(
∆f qt,1 ∆f qt,2 ∆f qt,3

)′
, it is possible to write

∆yt = βy∆f
m
3t−2 + βy∆f

m
3t−1 + βy∆f

m
3t + ξt

=
(
βy βy βy

)
∆f qt + ξt (10)

where ξt
iid∼ N

(
0, σ2

ξ

)
. Writing down the mixing-frequency DFMS model under the stacked

representation, using simultaneously both a monthly and a quarterly variables, can be
done through the state space representation of (8)-(10). Using Durbin and Koopman
(2012) notation and assuming an AR(1) process for the factor for exposition reasons:

xt = Zαt + εt εt∼N (0, H)

αt+1 = Mst + Tαt +Rηt ηt∼N (0, Q)
(11)

where

xt =
(
yt xqt,1 xqt,2 xqt,3

)′
αt =

(
f qt,1 f qt,2 f qt,3

)′
εt =

(
ξt εmt,1 εmt,2 εmt,3

)′
ηt =

(
ηqt,1 ηqt,2 ηqt,3

)′

Z =


βy βy βy
βx 0 0
0 βx 0
0 0 βx

 Mst =

 (1− φfL)µqst,1
(1− φ2

fL
2)µqst,2

(1− φ3
fL

3)µqst,3



T =

0 0 φf
0 0 φ2

f

0 0 φ3
f

 R =

 1 0 0
φf 1 0
φ2
f φf 1


Q = 1 and H is a diagonal matrix which entries in the main diagonal are determined by
the vector (σ2

ξ , σ
2
ε , σ

2
ε , σ

2
ε ). Assuming AR(p) process for the idiosyncratic part of observable

variables or for the factor is straightforward4.

4In Blasques et al. (2014) can be found a detailed explanation of how to write down matrices T , R
and Q for AR(p) process when using the stacking approach
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3 Estimation Procedure

The non-linear stacked model discussed above could be estimated, among other method-
ologies, by using the approximate maximum-likelihood estimation (imposing equation (9)
to be fτ = µsτ + ητ we would be in a similar model to the one estimated by Camacho
et al. (2012)) or through a Bayesian Markov chain Monte Carlo methodology similar to
the one proposed by Kim and Nelson (1998). It should be remarked that, when the first
estimation approach is selected, the stacked representation allows us to reduce the number
of possible paths to be accounted for with respect to Camacho et al. (2012). This is the
case since only three “monthly” lags of the factor appears at each t, making the number
of possible paths to be equal to 23 = 8 when a switching intercept is used instead of a
switching mean (remind in Camacho et al. (2012) 25 = 32 paths were possible). This
reduction would make the estimation computationally feasible without the necessity of an
additional approximation. Even though this possibility, the estimation procedure followed
in this paper is based on Bayesian methods. Two main reasons are behind our selection.
The first one is related with the observation done by Kim and Nelson (1998) regarding the
difficulty of judging the effects of the approximate maximum-likelihood on the inference
of parameters and unobserved components. In the case of Bayesian estimation, the exact
filter is instead computed. The second motive is related with allowing the model to be
estimated using either a switching intercept or a switching mean5.

3.1 Bayesian Inference using a MCMC methodology

A Metropolis Hasting algorithm within Gibbs Sampling is used to estimate the model.
The basic procedure is based on Kim and Nelson (1998) where three basic steps are
carried on. First, we draw the unobserved common component (∆f1, . . . ,∆fT ) conditional
on the unobserved states (S1, . . . , ST ) and all parameters (θ). This can be achieved
by using a simulation smoother algorithm as proposed by Carter and Kohn (1994) or
by Durbin and Koopman (2002). In a second step, the unobserved states (S1, . . . , ST )
are generated conditional on the unobserved common component and all parameters (θ)
through the multimove Gibbs-Sampling estimation described in Kim and Nelson (1999).
Finally, conditional on the common factor and unobserved states, equations from (8)-
(10) are independent, allowing for a separate treatment of each other. The identification
assumption for the model stands on assuming the variance of the common unobserved
component (σf ) to be equal to one. We refer the reader to Kim and Nelson (1999) to a
further detailed explanation of the involved procedure.

Since mixing frequencies are used in our model, one main clarification should be done
regarding the draw of the parameters associated with quarterly variables (βy, σy). As-
suming an AR(p) process for those variables, we have

∆yt =
(
βy βy βy

)
∆f qt + uy,t (12)

uy,t = φ1,yuy,t−1 + . . .+ φp,yuy,t−p + ξt

Conditional on (φ1,y, . . . , φp,y) and (∆f1, . . . ,∆fT ), it is possible to pre-multiply both sides
of equation (12) by (Φy = 1− φ1,y − . . .− φp,y) to obtain,

5Using a switching mean in the context of the approximate maximum-likelihood estimation means
increasing the number of path to be taking into account to 2pf+3, where pf refers to the order of the AR
process selected for the factor
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Φy∆yt =
(
βy βy βy

)Φy∆f
q
t,1

Φy∆f
q
t,2

Φy∆f
q
t,3

+ ξt (13)

Different from equation (12), equation (13) has uncorrelated residuals, allowing for the
possibility of using a Normal-gamma conjugate prior for the estimation of βy and σy. In
this particular case, the introduction of the stacking representation allows us to simplify
the estimation of the parameters associated with quarterly variables when compared to
the methodology proposed by Marcellino et al. (2013). In their work, the approach of
Mariano and Murasawa (2003) is instead used, meaning equation (12) of our specification
turns into,

∆yt =
1

3
βy∆ft +

2

3
βy∆ft−1 + βy∆ft−2 +

2

3
βy∆ft−3 +

1

3
βy∆ft−4 + (14)

1

3
uy,t +

2

3
uy,t−1 + uy,t−2 +

2

3
uy,t−3 +

1

3
uy,t−4

As noticed by Marcellino et al. (2013), two main difficulties have to be sorted to
estimate βy. First, since time is monthly specified (in the stacked approach each t refers
to quarters) there are two missing observations every quarter for quarterly variables.
This is easily solved by using only true observations for the estimation. The second, and
most important difficulty, is the appearance of a MA(4) regression error in equation (14),
where the error (ut) follows an AR(p) process. To overcome this problem Marcellino et al.
(2013) proposed to work out the variance covariance matrix of the error term of equation

(14), Θ(Φy, σy), and pre-multiply both side of (14) by Θ−
1
2 in order to obtain a standard

regression with uncorrelated residuals.

4 Empirical Application

4.1 In-sample analysis: US case

The mixing frequency framework allows for the possibility of adding the real GDP measure
to the four monthly coincident indicators commonly used when analyzing the US business
cycles. In other words, five variables are included in our model: real gross domestic
product (GDP), the industrial production index (IP), real personal income less transfer
payments (INC), real manufacturing and trade industry sales (SLS) and employees on
non-agricultural payrolls (EMP)6. When included in the model, all variables are demeaned
after computed a hundred time their change in the natural logarithm. The data sample
is from January 1959 to September 2014 and was obtained from the Federal Reserve
Economic Data (FRED) of the Federal Reserve Bank of St. Louis.

An AR(2) process is assumed for both the unobserved common factor and for the
idiosyncratic components of equation (1) and, as in Kim and Nelson (1998), we adopt
the “compact” state-space representation –after adapting it to the stacking approach– in

6The series related with employment could instead be replaced by “employee-hours on non-agricultural
payrolls” (Stock and Watson (1989)), or by “non-agricultural civilian employment” (Chauvet (1998) and
Chauvet and Hamilton (2006)).
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order to conduct our Bayesian estimation. This is achieved by pre-multiplying both sides
of equation (1) by (1− φi1L+ φi2L

2) in order to obtain the quasi-difference equation

y∗it = βi(L)f ∗it + εit (15)

where y∗it = ∆yi,t − φi1∆yi,t−1 − φi2∆yi,t−2 and f ∗it = ∆ft − φi1∆ft−1 − φi2∆ft−2.
As noticed in Stock and Watson (1989), payroll employment could not be exactly a

coincident but a lagging indicator. Therefore, we follow Stock and Watson (1989) and Kim
and Nelson (1998) and we include three lags of f ∗t in the payroll equation. In Appendix
A we describe the “compact” state-space representation for this particular setting.

Priors selected are quite diffuse. In particular, the prior for all factor loading coeffi-
cients is N(0, 1000), for standards deviation of observable variables an inverted gamma
distribution of the form IG = (6; .0001) is chosen, while for the parameters of autoregres-
sive polynomials is set equal to N(0,Σ), where Σ = [1 0 ; 0 .5]7. The prior for the regime
switching means (µ0 and µ1) is N(0, I2)8. Following Kim and Nelson (1998) informative
priors are used for transition probabilities.

Starting values are set as follows: we generate values for ft from t = 1, . . . , T from a
N ∼ N(0, 1). Using those random values we run an OLS regression for each variable and
we obtain values for the loading factors and the standard errors of the idiosycratic term of
each variable. Therefore, while starting values for factor loadings values are close to zero,
starting values for standard errors are around the unity. Starting values for autoregressive
parameters are set to zero while for the switching means are −2 and 2.5 for the recession
and expansion periods respectively.

Table 1 presents Bayesian posterior distributions of the parameters when the stacked
approach is used. Two different alternatives are shown, the top of the table refers to the
mixing frequency case while the bottom are results when no quarterly variable is included
in the model (as in Kim and Nelson (1998)). From the table we can observe the inclusion
of a quarterly variable among observable variables does not affect parameters estimation
with respect to the non-mixing frequency case.

Figure 1 shows the in-sample-smoothed posterior probabilities of recessions for both,
the mixing frequency (black line) and the non-mixing frequency case (red line). As usually,
shaded areas are NBER recession periods. The only remarkable difference between both
models is found with respect to the 1973’s recession. In that particular case, the in-sample
probabilities of the mixing frequency model shows stronger signals of an ongoing recession.
Nevertheless, similar to Camacho et al. (2012), the figure indicates no large improvements
are obtained when including the GDP measure. This is in line with results obtained in
Camacho et al. (2014), where it is shown that improvements attained in terms of business
cycle identification decrease with the number of the high quality indicators already used,
even when the added indicator has a larger signal-to-noise ratio.

4.2 Estimating Turning Points in real-time

Hamilton (2011) has pointed out the importance that earlier identification of business
cycle tuning points could have in terms of a promptly economic policy reaction. Analyzing

7As mentioned in Kose et al. (2003) the idea behind this kind of prior is that growth is not serially
correlated. Following them, we also rely in Metropolis-Hasting step in order to ensure stationarity

8In order to ensure µ1 > 0, if the generated value is less than or equal to 0, the draw is discarded
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Table 1: Parameter estimates

1 Quarterly and 4 monthly variables included

Param IP INC SLS EMP GDP Factor

β .485 .184 .412 .094 .197
[0.466; 0.503] [0.173; 0.195] [0.394; 0.429] [0.089; 0.099] [0.187; 0.207]

β2 .014
[0.009; 0.019]

β3 .014
[0.01; 0.018]

β4 .025
[0.021; 0.029]

φi1 −.067 −.199 −.414 .097 −.218 .224
[−0.109;−0.027] [−0.226;−0.173] [−0.442;−0.384] [0.068; 0.127] [−0.269;−0.167] [0.182; 0.272]

φi2 −.113 −.076 −.208 .379 −.044 .188
[−0.149;−0.077] [−0.103;−0.049] [−0.236;−0.179] [0.349; 0.41] [−0.097; 0.009] [0.144; 0.235]

σ2
i .188 .274 .533 .015 .304 1.000

[0.175; 0.201] [0.263; 0.284] [0.509; 0.555] [0.014; 0.016] [0.281; 0.325]

µ0 µ1 µ0 + µ1 q p

−1.934 2.213 0.279 0.871 0.981
[−2.128;−1.749] [2.029; 2.415] [0.219; 0.343] [0.844; 0.906] [0.976; 0.986]

4 monthly variables included

Param IP INC SLS EMP GDP Factor

β .501 .183 .421 .091 −
[0.482; 0.519] [0.171; 0.194] [0.403; 0.439] [0.087; 0.096] −

β2 .015
[0.01; 0.02]

β3 .015
[0.011; 0.019]

β4 .026
[0.022; 0.003]

φi1 −.088 −.190 −.418 .109 − .219
[−0.132;−0.046] [−0.217;−0.162] [−0.446;−0.388] [0.08; 0.138] − [0.177; 0.266]

φi2 −.109 −.066 −.213 .391 − .157
[−0.147;−0.071] [−0.094;−0.04] [−0.241;−0.184] [0.362; 0.421] − [0.112; 0.204]

σ2
i .170 .277 .527 .016 − 1.000

[0.156; 0.183] [0.266; 0.287] [0.504; 0.549] [0.015; 0.016] −

µ0 µ1 µ0 + µ1 q p

−1.971 2.24 0.269 0.861 0.98
[−2.161;−1.784] [2.058; 2.435] [0.21; 0.331] [0.832; 0.898] [0.976; 0.986]

Note: 4 monthly variables refers to a similar model to the one estimated in Kim & Nelson (1998). β are loading factors,
φ stands for autoregressive parameters, µ0 and µ1 are recession and expansion means, q and p are recession and expansion
transition probabilities. Values showed are the mean, the standard deviations (within parenthesis) and the 75% bands
(within brackets) from the posterior distribution. In both cases, the first 10000 draws in the Gibbs simulation were
discarded, while the next 40000 draws were used for the estimation.
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Figure 1: In-sample US smoothed recession probabilities. Mixing vs. non-mixing fre-
quency models
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Note: Both alternatives are computed using 40000 draws in the Gibss simulation (after
discarding the first 10000 draws.

the performance of a model from that perspective calls for the use of real-time data sets.
Following this direction, we evaluate our multivariate mixing-frequency DFMS model
as if it would have been used to estimate US recession probabilities during the last 35
years. Our data sets includes data vintages from January 1977 to August 2014 for all five
variables included in the model (depending on the variable the sample starts in January
1959 or in January 1967)9.

One important analysis to be done when real-time analysis is carried on is when the
information for each variables is released. As it is known, in the case of US’ economic
variables, advance data announcements for each monthly or quarterly variable (“advance
estimate”) are followed by data revisions during two consecutive months (“second” and
“third” estimates). After the “third” estimate release more revisions could be done which,
in general, affects the whole series (annual revisions, change of base period, etc.). In the
case of monthly variables, “advance” estimates of month τ for EMP, IP and INC are
published in month τ + 1 while “advance” information for SLS is released in month τ + 2.
For GDP, “advance” estimates for quarter t = bτ/3c are published at the end of the
month following the end of the t quarter. Variables’ data releases are never done all at
the same day of the month, meaning the available amount of information varies within a
month. We follow Chauvet and Piger (2008) and we assume estimation for each vintage is
done at the last day of the month. This implies that at any month τ , non-revised available
monthly data for EMP, IP and INC is up to month τ−1, while SLS is available up to τ−2.
Regarding GDP, information would be available up to quarter t − 1 = b(τ − 3)/3c and
depending whether it is the first, the second or the third month of the quarter, information
would respectively be the “advance”, the “second” or the “third” release10.

9Vintages for GDP, IP and EMP were obtained from the Federal Reserve Bank of Philadelphia real-
time data archive. We are grateful to Gabriel Perez-Quiros for kindly sharing the data vintages of SLS
and INC.

10Camacho et al. (2012) assume to be stand in the middle of the month meaning at month τ available
information for IP and EMP is up to month τ − 1, INC would be available up to τ − 2 and SLS up to
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Not only timing of data release should be taking into account when working with real-
time data, but also which data release is better to be used. When estimating business
cycles’ turning points using only GDP data, Chauvet and Hamilton (2006) recommend
waiting after the second estimate of the previous quarter is released to start using infor-
mation about two quarters ago. As an example, this would mean waiting until August
to make inference about the first quarter of the current year. This recommendation is
done in the context of a univariate Markov switching model (see Hamilton (1989)) and it
is based on the fact that GDP data revisions could be of a significant magnitudes. Also
aiming to estimate business cycle turning points but base only on monthly data, Chauvet
and Hamilton (2006) and Chauvet and Piger (2008) suggest using the second estimate of
EMP, IP and INC and the advance data release of SLS. This decision is basically based on
the necessity of a balanced panel data set for estimation purposes. However, as noticed
in Camacho et al. (2012), ragged-ends (or unbalanced panel data set) could easily be
incorporated in the context of a multivariate DFMS model where state-space models and
the Kalman filter are used11.These authors have shown, both theoretically and through a
Monte Carlo experiment, that when data for different variables are released with dissim-
ilar lags, using an unbalanced panel data with the latest available information helps to
improve the inference about the current state of the cycle.

Having into account these considerations, we analyze the business cycles dating perfor-
mance of our mixing frequency DFMS model both, using only revised data for all variables
but SLS or using advanced releases for all variables (latest available information). The
first case is in order to compare our framework with the non-mixing frequency DFMS
model used in Chauvet and Piger (2008) (excluding GDP from our model we are under
their specific setting). The second approach, helps us to empirically analyze results of
Camacho et al. (2012) related with the existing trade-off between using latest available
data (potentially sooner estimation of turning points but unrevised data) or using a “bet-
ter quality” data (potentially more accurate estimation of turning points but delay in
identifying those).

In order to identify a business cycle turning point some ad-hoc assumptions must be
done regarding how to declare a recession period has started (or finished). In this sense,
we rest on the two step dating decision rule of Chauvet and Piger (2008). Their rule
indicates at the first step that every time recession probability values move from below
(above) to above (below) 80% (20%) and remain at least three consecutive periods above
(below) that value, a recession (expansion) period is taking place. In the second step,
the first month of each recession (expansion) period is identified as the month –prior to
the first month with a 80% (20%) value– where recession probabilities move from below
(above) to above (below) 50%. Based on this decision rule, we estimate US recession
probabilities and identify US business cycles’ turning points for the period April 1959
to December 1976. We then recursively increased the time-span by one month and we
re-estimated the model generating real-time recession probabilities for each month from
January 1977 to August 2014. One clarification must be done when using the stacked
representation for real-time estimation. For each particular vintage analyzed, zero, one
or two months of missing observations need to be included at the end of the sample.
In other words, assuming we want to compute recession probabilities with data up to

τ − 3. In the case of GDP, it means to exclude last available release.
11Our strategy to deal with unbalanced panel data rely on skipping missing observations for the up-

dating Kalman filter equations of the simulation smoother algorithm.
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January 2014, our model forces us to incorporate missing observations for the months of
February and March 2014. Nevertheless, as it was said before, missing observations can
be easily handle in this context.

In Table 2 it is shown business cycles’ turning points as declared by the NBER and
those identified by both Chauvet and Piger (2008)’s model and by our mixing-frequency
DFMS model. As it was said, two cases are taking into account: using revised data and
using the latest available information. Given two of our series (SLS and INC) starts in 1967
and not in 1959 as in Chauvet and Piger (2008), plus we use the stacking representation
and that we introduce some minor differences regarding estimation assumptions12, we
decide to re-estimate turning points under the “stacking” non-mixing frequency DFMS
model. Some discrepancies are found between their and our results (columns 2 vs. 5 of
the table). In particular, it can be observed the 2000/01 peak date is identified for us in
November 2000 while Chauvet and Piger (2008) pointed out January 2001. In the case
of through dates, there is one month difference for the 2008 financial crisis (June 2009 in
our estimations and July 2009 in their case). Given these differences, a fair comparison
between models should be done using “re-estimated” turning points for the non-mixing
frequency DFMS.

Following the literature, we assume NBER’s peak and through dates as being the true
ones. From January 1977 to August 2014 five peaks and five through are pointed out
by the NBER. Each of the alternative estimations identified all 10 turning points and
none of them give a “false” positive. The first comparison to be done is related with the
turning points we get by using “advance” data or when using only “second” estimations.
When analyzing the non-mixing frequency model we observe only one peak (2000/2001)
dates differ, while in the mixed-frequency case just the 1982 through dates differ (in
both cases by one month). This result could mean differences between “advance” and
“revised” does not affect the identification of a turning point. It should be reminded
that, in the context of a univariate Markov switching model, Chauvet and Hamilton
(2006) recommend waiting until the “second” GDP estimate of the previous quarter is
released in order to use GDP data from to quarters ago for accuracy purposes. When
analyzing whether there exist accuracy gains from the introduction of a quarterly variable
in the model, we observe some evidence that this is the case. When “revised” data is used
(column 3 vs. 5 of the table) we see for the 1981, 2000/2001 and 2007/2008 peak dates
the mixing-frequency model does better in getting closer dates to the ones pointed out
by the NBER (3 out of 5 cases) and does never do worse. For the through dates, any
improvement is found when using the mixing frequency DFMS model. Something similar
occurs when we compare both non-revised data estimated models (column 4 vs. 6). In
that case two peak dates (1981 and 2000/2001) and one trough date (1982) are better
estimated in the mixing-frequency DFMS model. Altogether, it appears that enlarging
the model by using GDP gives some gains when the target is to obtain the NBER turning
points, with more impact on the peak’s date identification. Moreover, the enlarged model
never do worse than the non-mixing frequency case. Improvements in accuracy from
adding a quarterly variable are also found by Camacho et al. (2012), but in their case
improvements were higher when estimating the phase out of the crisis (throughts) than
the peaks dates.

12We assume looser priors for the factor loadings and the autoregresive parameters. A rejection algo-
rithm is used for ensure stationarity in Chauvet and Piger (2008) while a Metropolis-Hasting step is used
in our model.
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Figure 2: Real-time US smoothed recession probabilities. Mixing vs. non-mixing frequen-
cies DFMS models
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Note: Both alternatives were computed at each t using 8000 draws in the Gibss simulation
(after discarding the first 2000 draws). Latest available information is always used.

Table 2 also shows months when each of the models would have announced a turning
point according to Chauvet and Piger (2008) dating rule. When the focus is on peak
dates, it can be observed that enlarging the model by including the GDP among the
variables do not change the announcement date between the mixing and the non-mixing
frequency models. However, in line with Camacho et al. (2012), we observed that in
all cases but the 1990 recession, peak dates are announced one month in advance when
latest available information is included. This result comes from exploiting the possibility,
proposed by Camacho et al. (2012), of dealing with unbalanced panel data in the MSDF
model. In our setting, this means having one month of additional information for three
out of the four monthly variables included. In the case of through announcements dates,
adding GDP data means delaying declaration date by two months for the last recession
when only revised data is used (column 9 vs. 11) while the announcements dates differ
for the last three thoughts when results of using last available information are compared
(column 10 vs. 12). Regarding the use of latest available information, as in the peak case,
we found that through announcement dates would have been done (in general) one month
in advance. When comparing announcement dates with the NBER declaration dates, the
use of the latest available information implies the model would have declare peaks date
during the same month as the NBER in three cases and two months in advance in the
other two. In declaring the end of a recession using unbalanced panel data means earlier
announcements than the NBER in all cases but the 1981/1982 recession.

In line with Camacho et al. (2012), results points out the necessity of using the latest
available information for promptly identification of business cycle turning points. Regard-
ing using mixing frequencies, we don’t find gains in terms of how quickly the announcement
of a new phase of the business cycle has started. However, there are gains on using this
kind of models when the aim is on a more accurate identification of the turning point
(thinking on the NBER turning points as the true one).

In Figure 2 we plot real-time recession probabilities for the US using latest available
information for the non-mixing and the mixing-frequency case. As it can be observed,

15



there is no big difference between both models around NBER recession periods. This
result diverges from Camacho et al. (2012) who found differences between the two cases
(see Figures 7 and 8 from their working paper).

4.3 Forecasting Output

Predicting the evolution of the GDP is also of a main importance from a decision making
point of view. Not only when the focus is on the implementation of long-term policies, but
also in the very short-term for the day-to-day decisions. In this sense, the development of
models aiming to obtain promptness accurate predictions about output’s evolution (now-
casting or backcasting estimations) has been growing during the last decades. Reviewing
a large amount of literature on this field, Chauvet and Potter (2012) point out factor
models, non-linearities and mixing-frequencies as relevant issues when writing down the
model to be used in predicting the short-term evolution of the GDP. Using real-time data
for the US economy, the authors compare 13 different models in terms of forecast accuracy
(measured in terms of both the root mean square error –RSME– and the Theil inequality
coefficient), and found differences in predicting output during recession and expansion
phases. In fact, those models which do reasonable good during expansions (but not sig-
nificantly better than a simple AR(2) model) are not those which do good enough during
recessions. When the attention is set on downturn periods, Chauvet and Potter (2012)
found that augmenting the simple AR(2) model by including as regressors the unobserved
common component and the switching-states probabilities obtained from a multivariate
DFMS model, it is possible to get significantly better forecasting accuracy compared to
the simple AR(2) case and all the other models there studied 13. However, in order to
estimate the “augmented” model they need to use a “two step” procedure since GDP
measures are absent among the variables included in the DFMS. The stacking approach
presented above gives us the opportunity of directly analyze the forecast accuracy for the
GDP when a mixed frequencies DFMS is used.

Aiming to measure the predictive accuracy of our model, we compare the nowcast per-
formance of our model relative to the simple AR(2) and to the one proposed by Chauvet
and Potter (2012). The analysis also take into account the specific month of the quarter
when the predictive value is estimated. To obtain the GDP nowcast values we basically
rely on the state-space representation of section 2.2.2 which is not the same as the “com-
pact” state-space representation14. In this sense, we first estimate all the parameters and
the unobserved states values using the methodology explained in section 3 to fill-in the
new needed matrices. Relying on the Kalman Filter, we then estimate the common un-
observed component (4ft) up to the t + h period (where h is the h-period ahead to be
forecast). The predicted value for 4yi,t+h is then easily obtained. It should be noticed
that if we had used the “compact” state space representation instead, the forecast would
have been about y∗i,t+h = 4yi,t+h − φi14yi,t+h−1 − φi24yi,t+h−2 and not for 4yi,t+h.

Compare to Chauvet and Potter (2012), we extend the period where forecast accuracy
is analyzed while more information is added for each particular vintage. In particular,
Chauvet and Potter (2012) study the performance of their model using the last balanced

13Camacho et al. (2013) found gains in using mixing-frequency dinamic factor models when forecast
the European cycle. However, they do not find evidence of a better forecast accuracy when non-linear
models are used

14see Appendix B for matrices’ representation
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data-vintages that can be obtained at the end of March, June, September and December
of each year. Regarding quarterly data, this means using the “third estimate” of the
GDP for each quarter15, while monthly information correspond to data up to t − 2,
meaning monthly data will be up to January, April, July and October depending on the
vintage analyzed. In other words, the latest available data for the IP, EMP and INC is
not used (those three variables have available information up to t − 1 in each particular
vintage t). This is not the case when estimating the mixing frequency DFMS model
here proposed, since unbalanced panel data sets can be used. Moreover, we distinguish
at which particular vintage of each quarter the nowcast exercise is conducted. In other
words, depending whether vintage t is the first, the second or the third month of the
current quarter different values will be obtained. Differences comes from the amount of
monthly available information at each particular month and whether the “advance”, the
“second” or the “third” estimates values for GDP of the previous quarter is used. In all
three cases the target would be the official “third” GDP estimate published three months
after the end of the current quarter. In other words, nowcasts are done between 3 and 5
months prior to the publication of our target. Regarding the sample period extension we
have estimated the model using data from 1959Q1 to 1976Q4 and we have re-estimated it
recursively generating noecasts for each quarter from 1977Q1 to 2013Q4. As in Chauvet
and Potter (2012) we compare nowcast accuracy related to the simple AR(2) model in
terms of RSME and the Theil inequality values. To study when the nowcast accuracy are
significantly different we rely in both the nested tests proposed by Clark and McCracken
(2005) for the augmented AR(2) model and the Diebold and Mariano (2002) test for the
MF-DFMS model.

In Table 3 we present the RMSE and the Theil inequality for the output nowcast
for the three models under analysis. The mixing frequency DFMS model improves the
nowcasts accuracy –with respect to the benchmark AR(2) model– when some of the
monthly information about the current quarter has already been released. In other words,
using the mixing frequency DFMS model during the second or the third month of the
current quarter significantly increase the GDP’s nowcast accuracy with respect to the
AR(2) model. The improvement occurs regardless the nowcast is done during expansion
or recession phases, even though the difference is not significant during expansions in case
of Panel B (estimations done during the 2nd of the quarter). When the nowcast is done
during the first month of the quarter and no information about the current quarter is
published yet, no significant gains are obtained with respect to the simple AR(2) model.
Nevertheless, a lower RSME value is obtained for recessions periods.

Regarding the Theil inequality coefficient, results show in all cases the mixing fre-
quency DFMS model does it relatively better than the AR(2) model. Improvements are
also found when the focus is on tracking the variance of the GDP (Theil Inequaility
Variance statistic).

To compare values obtained with the augmented AR(2) model to the ones obtained
with the mixed frequency DFMS model, we only focus on nowcast done during the 3rd

month of the quarter as Chauvet and Potter (2012) propose. Comparing values obtained
during the 1st or the 2nd month of the quarter wouldn’t have been complete fair, since
no monthly information about the current quarter would have been use in their case. As
it can be observed at Panel A of table 3 values relative to the simple AR(2) model are

15As an example, the 1990 March vintage correspond to the “third estimate” of the last quarter of 1989
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Table 3: RMSE and Theil Inequality
(1977.Q1 to 2013.Q4 vintages)

Panel A: Nowcast done during the 3rd month of each quarter

RSME Theil Inequality

Models
Full

Expansion Recession Total Bias Var Cov
Sample

AR(2) 2.634 2.121 4.536 .387
.014 .418 .574

Relative 1.00 1.00 1.00 1.00

AR(2) - DFMS 2.198 1.788 3.747 .313
.016 .259 .732

Relative .834∗∗∗ .843∗∗∗ .826∗∗ .809

MF - DFMS 1.900 1.801 2.365 .261
.041 .169 .797

Relative .722∗∗∗ .849∗∗ .521∗∗ .674

Panel B: Nowcast done during the 2nd month of each quarter

RSME Theil Inequality

Models
Full

Expansion Recession Total Bias Var Cov
Sample

AR(2) 2.627 2.131 4.483 .386
.014 .425 .567

Relative 1.00 1.00 1.00 1.00

MF - DFMS 2.204 1.943 3.287 .297
.086 .184 .733

Relative .839∗∗ .911 .733∗ .768

Panel C: Nowcast done during the 1st month of each quarter

RSME Theil Inequality

Models
Full

Expansion Recession Total Bias Var Cov
Sample

AR(2) 2.626 2.117 4.519 .389
.011 .442 .554

Relative 1.00 1.00 1.00 1.00

MF - DFMS 2.661 2.271 4.208 .352
.108 .167 .731

Relative 1.014 1.073 .931 .906

Note: AR(2)-DFMS refers to the augmented AR(2) model proposed by Chauvet and Potter
(2012). MF-DFMS refers to the mixing-frequency DFMS model. (*), (**) and (***) refers
to a 10%, 5% and a 1% statistically significant difference relative to the AR(2) model. In the
case of the AR(2)-DFMS we use Clark and McCracken (2005) test for nested models. For the
MF-DFMS model we employ the corrected Diebold and Mariano (2002) test.
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smaller for the mixed frequency DFMS model when the full sample, recession periods or
the Theil inequality are analyzed.

Results are in line with those shown for the comparison with Chauvet and Potter
(2012).

5 Conclusions

An alternative and easily handle Bayesian approach for computing mixed frequencies mul-
tivariate dynamic factor models –both in the linear and the non-linear cases– has been
proposed in the present paper. Different from most of the literature –which has generally
stood on Mariano and Murasawa (2003) strategy for dealing with mixing frequencies– we
have followed the stacking approach proposed by Blasques et al. (2014). This alternative
strategy has given us the opportunity of solving some of the problems that has emerged
when a Bayesian estimation has been conducted or when a non-linear extension of the
model was proposed. To our knowledge, Marcellino et al. (2013) is the only existing
attempt of Bayesian estimation of a linear mixed frequency multivariate dynamic factor
model. There, the Bayesian estimation of coefficients related with low frequency observ-
ables (e.g. quarterly variables) require the approximation of variance-covariance matrices
of MA(4) regressions equations where the errors follows –in turn– an AR(p) process. As
it has been shown, our estimation strategy completely skip this problem. Regarding the
estimation of non-linear mixed frequency multivariate dynamic factor models, both Ca-
macho et al. (2012) and Camacho et al. (2014) are the main references in the literature.
With respect to their work, we have shown our estimation strategy does not confront the
“curse of dimensionality problem” where even in the most simpler case 32 parallel Kalman
filters have to be evaluated. This allows us avoiding to approximate 32 (or even more)
different paths using only 2 different states as in Camacho et al. (2012) and Camacho
et al. (2014).

We have applied the new proposed methodology to estimate the multivariate DFMS
model of Kim and Nelson (1998) but extending it to the mixed frequency case. In particu-
lar, we add the real GDP measure to the four monthly coincident indicator commonly used
to track the U.S. business cycle. Results show that including output measures means a
better accuracy in terms of a real-time distinction of the turning points of the US business
cycle –when NBER recession dates are assumed as being the true ones–. When the focus
is on the timing of the announcement a recession has started or ended, we have shown
the possibility of using the latest available information –the model deals with unbalanced
panel data– would have meant anticipating the NBER announcement dates for most of
the recessions declared since 1980. Finally, compared with other existing methodologies
it is has been shown our non-linear model has a better nowcast accuracy when at least
one month of monthly data from the current quarter is already released (i.e. during the
second and third month of the quarter).
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A Appendix: state space representations

Under the specific setting described in section 4.1, the “compact” state representation of
the model can be written as

Yt = Z × Ft + εt εt∼N (0, H)

Ft+1 = Mst + T × Ft +Rηt ηt∼N (0, Q)
(16)

where
Y ′t = (y∗t , x

1∗

t,1, x
1∗

t,2, x
1∗

t,3, x
2∗

t,1, x
2∗

t,2, x
2∗

t,3, x
3∗

t,1, x
3∗

t,2, x
3∗

t,3, x
4∗

t,1, x
4∗

t,2, x
4∗

t,3)
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
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x 0 0
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2 ψ1
1 β1

x 0
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2 ψ1
1 β1

x

0 0 0 0 ψ2
2 ψ2

1 β2
x 0 0

0 0 0 0 0 ψ2
2 ψ2

1 β2
x 0

0 0 0 0 0 0 ψ2
2 ψ2

1 β2
x

0 0 0 0 ψ3
2 ψ3
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x 0 0
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1 β3
x 0
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2 ψ3
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x

0 ψ4
45 ψ4

44 ψ4
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x 0 0
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41 β40
x 0
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45 ψ4
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43 ψ4
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and ψyj = −φyjβy ; ψij = −φijβix ; j = 1, 2 ; i = 1, 2, 3 and ψ4
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The variance-covariance matrices are given by Q = 1 and

H = diag(σ2
ξ , σ
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Vectors and matrices for the transition equations are

M ′
St = (0(6,1), ϕst,1 , ϕst,2 , ϕst,3) η′t = (0(6,1), η

q
t,1, η

q
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q
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f1 + φf2

0 φ2
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The values for the vector containing the switching means comes directly from expanding
equation (2) when the stacking approach is used:

ϕst,1 = µqSt,1 − φf1µ
q
St−1,3

− φf2µ
q
St−1,2

ϕst,2 = µqSt,2 − (φ2
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ϕst,3 = µqSt,3 − (φ3
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− (φ2
f1φf2 + φ2

f2)µqSt−1,2
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B

Under the specific setting described in section 4.1, the large state representation used for
the nowcasting exercise can be written as

Yt = Z × Ft + εt εt∼N (0, H)

Ft+1 = Mst + T × Ft +Rηt ηt∼N (0, Q)
(17)

where
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the variance-covariance matrix of the idiosyncratic components is given by H = 0(13,13)

and Q(24×24) is diagonal matrix equal to
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Sub-matrices inside T and R are equal to
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while the values for ϕst,1 , ϕst,2 and ϕst,3 are equal to the ones described in Appendix A.
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