Al Research
for Climate Change and
Environmental Sustainability

e ———

|| " 1 — —— O

Claire Monteleoni
INRIA Paris

University of Colorado

Boulder
Choose France a




® Snow drought conditions through fall and winter 2021 created dry land-cover

e 80-100 mph winds, combined with ignition, launched an uncontrollable “fire storm”
® Lossof 2 lives. 1000 homes and 20 businesses were destroyed, and more damaged
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January 2018: Montecito, Santa Barbara County ‘
® Thomas Fire destroyed 1063 structures and led to poor air quality

Intense rainfall as the fire was nearing containment produced a debris flow

23 lives and over 130 homes were lost



new solutions this creates for nations, business and for everyday life, we must also

think about how to maximize the gains for society and our environment at large.”




Climate Informatics: using Machine Learning  ((cl.
to address Climate Change

2008 Started research on Climate Informatics, with Gavin Schmidt, NASA

2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award]
2011 Launched International Workshop on Climate Informatics, New York Academy of Sciences
2012 Climate Informatics Workshop held at NCAR, Boulder, for next 7 years

2013  “Climate Informatics” book chapter [M et al., SAM]

2014  “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurlPS Tutorial]
2015 Launched Climate Informatics Hackathon, Paris and Boulder

2018 World Economic Forum recognizes Climate Informatics as key priority
2021 Computing Research for the Climate Crisis [Bliss, Bradley @ M, CCC white paper]

2022  First batch of articles published in Environmental Data Science, Cambridge University Press
2024 13" Conference on Climate Informatics, Turing Institute, London

2025 14 Conference on Climate Informatics, April 28-30th, Rio de Janeiro, Brazil
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Approach: Exploit all available data

d Simulated data generated by physics-based models
( Numerical Weather Prediction (NWP) models
1 General Circulation Models (GCM)
(d Regional Climate Models (RCM)

Horizontal Grid
(Latitude-Longitude)

Vertical Grid
(Height or Pressure)

llllllllllll

J Reanalysis data

J Gridded data products from data assimilation:
applies physical laws to observations

1 Observation data
1 Satellite remote sensing data Ny ==
O In-situ data B




Al Methods

d Semi-supervised, unsupervised, self-supervised learning

d New methods for downscaling (super-resolution), interpolation of geospatial data
(d New pretext tasks for self-supervised learning, e.g., STINT [Harilal et al., 2024]
(d Regularization via multi-tasking over variables, lead-times

J Generative Al

O VAE, Normalizing Flows
 Diffusion and flow-based training
(d Develop new generative downscaling methods, e.g., [Groenke et al., 2020]

(d Learning under non-stationarity
1 Learn level of non-stationarity over time and space



ADAPTATION

Al for Extreme Weather and Cascading Hazards

Pressure
level A
(~altitude)

225 hPa -

Hurricane track prediction

Forecasting Indian Summer Monsoon
precipitation extremes

500 hPa -

700 hPa -

Avalanche detection

[Giffard-Roisin et al., Frontiers 2020] Generative Al for weather forecasting



MITIGATION

Reducing carbon emissions

Accelerate green energy transition
e Al-driven forecasting of solar, wind

e Al to downscale solar and wind data

Reduce compute for weather and
climate modeling

 Once trained, Al is significantly faster
at prediction than physical models




IMPACTS
Al for Understanding and Predicting Climate Change

, Use Al to learn relations between
gt s IPCC simulations and observations

* Robustify climate model ensemble
forecasts

* Projecting long-term sea-level rise

* Projecting long-term carbon emissions

UCAR Science Education



Al for downscaling spatiotemporal data

Global climate model simulations are
coarser scale (in space and time) than
needed for multiple tasks in:

* Climate change adaptation

* Climate change mitigation

* Projecting long-term impacts

Approach: Use ML to downscale
climate model data to relevant scales

Phenomenon time scale

100 years
10 years

1 year

1 month
1,000,000 s
1 week
100,000s

1 day

10,000s

1 hour

1,000s

100s
1 min
1s

0.01s

Extratropical
cyclones:

Clouds/
turbulence

Large eddy simulation

; models :
: DNS turbulenice models
Mesoscale : Synoptic Scale

10°%m 102m1m 100m 1km  10km 100 km 1000 km 10,000 km 40,000 km

Phenomenon space scale

[Gettelman, et al., Science Advances, 2022]

Earth circumference



Revolution in Al for weather forecasting

Global Observing System ECMWF model

J’f

Ned.

Assim

What is reanalysis data?

Since 2022, a variety of Al models have
shown weather forecasting performance
comparable or BETTER than numerical
weather prediction (NWP).

These deep learning (DL) models are trained
on reanalysis data (ERA5) to predict the next
weather state given the current state

Model predictions are then « rolled-out » to
forecast 7-10 days in the future

Image credit: European Center for Medium Range Weather Forecasting (ECMWF) website
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[Couairon, Singh, Charantonis, Lessig, Monteleoni, 2024]

ML / hybrid models

ML / hybrid model:
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Generative Al for weather forecasting

850hPa Temperature Title 850hPa Wind
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[ArchesWeatherGen, Couairon, Singh, Charantonis, Lessig, Monteleoni, 2024]



Al for Climate Data Equity

e Train models in high-data regions and apply them in low-data regions
o Train and validate them in high-data regions

o Fine-tune them using the limited data in the low-data regions and use them to
generate more data.

o Contribution to climate data equity

o Local scales (e.g. legacy of environmental injustice in USA)

o Global scales:
s Global North historically emitted more carbon; Meanwhile there’s typically more data there

s Global South is suffering the most severe effects of the resulting warming



Are Black Americans Underserved by the NWS Radar Network?
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Long-term goals

Cascading Hazards
. Goal: move beyond individual weather extremes, to how they couple
. With massive wildfires everywhere, there is extreme urgency!

Climate Justice
. Our research should always help increase climate equity

. Ultimately, we should strive for approaches to help UNDO the legacy of
climate IN-justice



Thank you!

And many thanks to:

Arindam Banerjee, University of Illlinois Urbana-Champaign
Nicolo Cesa-Bianchi, Universita degli Studi di Milano
Tommaso Cesari, Toulouse School of Economics

Guillaume Charpiat, INRIA Saclay

Cécile Coléou, Météo-France & CNRS

Michael Dechartre, Irstea, Université Grenoble Alpes
Nicolas Eckert, Irstea, Université Grenoble Alpes

Brandon Finley, University of Lausanne

Sophie Giffard-Roisin, IRD Grenoble

Brian Groenke, Alfred Wegener Institute, Potsdam

Nidhin Harilal, University of Colorado Boulder

Tommi Jaakkola, MIT

Anna Karas, Météo-France & CNRS

Fatima Karbou, Météo-France & CNRS

Balazs Kégl, Huawei Research & CNRS

David Landry, INRIA Paris

Luke Madaus, Jupiter Intelligence

Scott McQuade, Amazon

Ravi S. Nanjundiah, Indian Institute of Tropical Meteorology
Moumita Saha, Philips Research India

r";‘r 1

Climate and Machine Learning Boulder (CLIMB) Gavin A. Schmidt, NASA Senior Advisor on Climate

D

Saumya Sinha, National Renewable Energy Lab
Cheng Tang, Amazon
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o ENVIRONMENTAL
DATA SCIENCE

An interdisciplinary, open access journal dedicated to the potential of
artificial intelligence and data science to enhance our understanding of
the environment, and to address climate change.

Data and methodological scope: Data Science broadly defined, including:
Machine Learning; Artificial Intelligence; Statistics; Data Mining; Computer Vision; Econometrics

Environmental scope, includes:

Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry &
physics, paleoclimatology)

Climate change (including carbon cycle, transportation, energy, and policy)

Sustainability and renewable energy (the interaction between human processes and ecosystems, including
resource management, transportation, land use, agriculture and food)

Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)
Societal impacts (including forecasting, mitigation, and adaptation, for environmental extremes and hazards)

Environmental policy and economics
O @envdatascience

OPEN a ACCESS

www.cambridge.org/eds

i CAMBRIDGE

UNIVERSITY PRESS
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