[Please select]

Warming the MATRIX: paper discussion

Conference Macroeconomic modelling frontiers for research and policy

L. Parisi DG International and European relations

28/11/2024

What the paper is about (1/2)

Warming the MATRIX: Uncertainty and heterogeneity in climate change impacts and policy targets in the Euro Area

- Economic effects of climate change and mitigation policies in EA
- Focus on uncertainties and heterogeneous impacts in climate and economic systems
- Extends the MATRIX model by integrating climate dynamics and policy interventions

Motivation

- Improve modelling framework
- Offer more **nuanced and realistic** assessment of economic impacts
- Improve climate policy design to account for regional differences

Research question

How do **uncertainty and heterogeneity** in climate and economic systems influence the economic impacts of climate change and the feasibility of mitigation targets in the Euro Area?

What the paper is about (2/2)

Agent-based integrated assessment framework to simulate climate scenarios

MATRIX = agent-based stock-flow consistent macroeconomic model, focused on energy production and consumption

- Heterogeneous agents
- Climate, Banks, Central Bank, Households, Firms and Governments
 - Firms contribute to climate change via CO2
 - Different models to represent future climate evolution (robustness)
 - Different climate damage functions (homogeneous and heterogeneous)
 - Governments settle carbon tax to comply with broad climate objectives. Firms lower emissions (abatement costs)

What the paper is about (2/2)

Heterogeneous climate damages amplify magnitude and volatility of GDP losses from climate change

Economic impacts of climate change

 Homogeneous shocks may underestimate climate change effects on aggregate output by up to 33% (by 2100)

Role of policy and technological progress

- High emission reduction requires high carbon taxes (EUR 110 EUR210/tCO2 for 75% emission reduction).
- Technological advancements necessary to reduce abatement costs, thus emissions

Behavioral dynamics

• Heterogeneous climate shocks amplify coordination failures, which in turn cause more severe economic disruptions. Policy inertia also contributes to nonlinear effects

Key strengths of the paper (1/2)

Paper extremely relevant in current policy and political debate

Advance existing literature

- Combines advantages of IAMs and pure agent-based models in terms of heterogeneity and complexity of the simulated framework
- Enhanced applicability of modelling framework

Support current debate

- Robust, evidence-based call for action
- Insights for policymakers, especially in the context of "Fit-for-55 package"
- Socio-economic dimension of climate change and climate policies (climate justice)

Key strengths of the paper (2/2)

Paper advance existing literature via modelling improvements and original policy reflections

Modelling improvements

- Combination of agent-based approach and broad macroeconomic modelling of many sectors
- Dynamic adjustments via testing different policy tools

Policy reflections

- How climate change and climate policies are shaped by climate uncertainty and different agent responses
- More accurate calibration of policy interventions, to account for **sectoral** and **geographical differences**

Caveats of the paper

Model complexity is a strength as well as a limitation

- Many parameters are exogenous and based on existing literature. Especially on technological advancement, this could limit credibility of results
- Combination of many different factors produces **big uncertainty** on results: good to identify overall direction of travel, rather than precise estimations
- Structural change of the economy needed for the green transition is not considered in the paper: this may structurally change the relationship between firms' business models, households' consumptions and governments expenditure

Possible refinements and policy applications

The model could help answering **targeted policy questions**, particularly relevant in current policy debate and geopolitical context

Technical refinements

- Non-linear damage functions and feedback loops (tipping points) to explore extreme outcomes
- International spillover effects and cross-border economic feedbacks

Possible model extensions

- Implications of asymmetric implementation of climate policies in EU (on climate targets and damages)
- Implications of decreased climate ambition in EU
- Implications of geopolitical uncertainty (via supply chain and trade disruptions)

A few open questions

- Role of carbon tax: is it equivalent to the social cost of carbon (as in IAMs)?
- Is there a role for **actors' expectations** around climate policies and/or climate damages?
- How can you combine EA-specific models (and regulations) with **global climate** targets/temperature?
- How the effects of **different energy technologies** could be included?
- How would you compare this model (and results) with **different scenario** set-up (i.e. IEA and NGFS scenarios)?
- Do you consider **country-specific climate policies** (as opposed to EA-level ones)?