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Abstract

Forecasters are typically not equally interested in all possible realisations of a ran-
dom variable under scrutiny. Financial risk managers, for instance, usually put rela-
tively more weight on regions of extreme losses. In density forecast comparison, it is
common practice to use strictly proper scoring rules to rank a collection of candidate
predictive distributions. When focusing on a region of interest, however, weighted scor-
ing rules obtained via conditioning are no longer strictly proper. We develop a general
procedure for focusing, i.e., localising, scoring rules in a way that preserves their strict
propriety. Our procedure provides a myriad of strictly locally proper scoring rules be-
yond the censored likelihood score. In particular, the focusing procedure we develop
is general enough to handle both univariate and multivariate scoring rules, including
the rich class of kernel scores. The one-to-one correspondence between the censored
distribution and the original distribution on the region of interest preserves not only
strict propriety but also the optimal power properties of the Logarithmic scoring rule.
More specifically, our paper generalises the Neyman Pearson lemma, showing that the
uniformly most powerful test for a localised version of this lemma’s original hypotheses
boils down to a censored likelihood ratio test. Based on a collection of popular scor-
ing rules, including the Logarithmic, Spherical, Quadratic and Continuously Ranked
Probability Score (CRPS), Monte Carlo simulations and the results of our empirical
illustration align with the intuition that censoring bears, also in general, more de-
sirable power properties than conditioning, especially if the number of expected tail

observations is small.
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1 Introduction

Any forecasting application necessitates quantifying the relative performance of differ-
ent forecasting methods. Gneiting and Raftery (2007) motivated the use of strictly
proper scoring rules for this job, which has become the industry standard (Brehmer
and Gneiting, 2020; Patton, 2020). The reason for this is that (strictly) proper scoring
rules assign a score to the actual distribution that is (strictly) larger than the score of
any other predictive distribution. Although strictly proper scoring rules admit point
forecasts (e.g. mean squared error), we concentrate on their use in combination with
predictive distributions and densities. Forecasts in the form of predictive distributions
have gained interest in many different forecasting fields because they give a complete
picture of the stochastic nature of the variable of interest (Dawid, 1984). At the same
time, the specific characteristics of such applications encourage us to zoom in on certain
parts of this picture, i.e. to localise the original scoring rule. In this paper, we present
a general censoring-based procedure for localising scoring rules that preserves strict
propriety. Our framework nests the censored likelihood (csl) scoring rule proposed by
Diks et al. (2011) as a special case. We show that the uniformly most powerful test for
a localised hypothesis test is based on this strictly locally proper scoring rule.

Motivating examples for local scoring rules can be found in different application
areas. In risk management, for example, one is particularly interested in the left tail of
the loss distribution, largely driven by regulatory capital requirements, formulated in
terms of risk measures such as the Value-at-Risk (VaR) and Expected Shortfall (ES).
See e.g. Diks et al. (2014), Kole et al. (2017), Opschoor et al. (2017) and Diks and Fang
(2020) for applications. In macroeconomics, policymakers set — whether regulated by
law or not — targets for central variables like inflation, nominal GDP and unemployment
rates. For such clear targets, it is logical to zoom in on the part of the distribution
around the target value. We refer to Gneiting and Ranjan (2011) and Tacopini et al.
(2022) (and references therein) for interesting examples in macroeconomics.

The literature on focused scoring rules starts with the weighted likelihood score of



Amisano and Giacomini (2007), which simply multiplies the unweighted logarithmic
scoring rule by a weight function. As independently observed by Diks et al. (2011) and
Gneiting and Ranjan (2011), this procedure produces improper scoring rules because
it favours distributions with more mass assigned to regions with higher weights, inde-
pendent of the underlying distribution. As proper alternatives, Gneiting and Ranjan
(2011) develop the weighted continuously ranked probability scoring (twCRPS) rule,
while Diks et al. (2011) propose the conditional (cl) and csl scoring rule. Holzmann
and Klar (2017, Theorem 1) observe that the procedure of the cl scoring rule can be
generalised to other scoring rules than the logarithmic scoring rule. They propose a
general procedure for focusing regular scoring rules that applies the regular scoring rule
to a weighted transformation of the original distribution. Their approach differs from
ours by the suggested transformation of the original distribution: a conditional vis-
a-vis censored distribution. The impact of this difference is that our censoring-based
mechanism is the only one guaranteed to deliver strictly locally proper scoring rules.
Interestingly, another route leading to the conditioning mechanism of Holzmann and
Klar (2017, Theorem 1) is to first generalise the weighted log-likelihood scoring rule
proposed by Amisano and Giacomini (2007) and then apply a transformation coined
properisation by Brehmer and Gneiting (2020, Theorem 1).

Our research also builds on the existing work on strictly proper scoring rules and
their associated divergence measures. Although Gneiting and Raftery (2007) are re-
sponsible for the formal definition of strict propriety, scoring rules satisfying this prop-
erty date back to at least the quadratic scoring (QS) rule proposed by Brier (1950). It
is useful to know that this research area is dichotomous in the sense that much of the
research prior to the rigorous treatment of general probability measures by Gneiting
and Raftery (2007) has been conducted relative to discrete distributions on a finite
outcome space, while more recent work more often follows the generality of Gneiting
and Raftery (2007). For instance, the introduction of the LogS (Good, 1952; Toda,
1963) and spherical scoring (SphS) rule (Roby, 1964; Good, 1971), the initial gener-

alisations of QS and SphS to the PowS, and PsSphS, families, and the axiomatic



characterisations of the LogS, PowS, and PsSphS, rules provided by Shuford et al.
(1966), Savage (1971), Selten (1998) and Jose (2009), are all presented in a discrete
context. In our analysis, we work with the generalisations of the PowS,, and PsSphS,,
families advocated by Gneiting and Raftery (2007) and Ovcharov (2018).

Moreover, the expected score differences of many scoring rules are recognised as
well-known divergence measures, which reduce all together to the class of Bregman di-
vergences (Bregman, 1967) when solely considering strictly proper scoring rules (Dawid,
2007; Gneiting and Raftery, 2007; Ovcharov, 2018; Painsky and Wornell, 2019). Con-
sequently, concentrating the score divergences of strictly proper scoring rules excludes
all f-divergences except the Kullback Leibler divergence (Kullback and Leibler, 1951),
which is the unique intersection of the Bregman and f-divergence families. Due to
its favourable properties (Liese and Vajda, 2006) the Kullback Leibler divergence has
become the cornerstone in measuring the discrepancy between densities. For example,
it is the divergence that is minimised in the maximum likelihood framework (Fisher,
1922), which bears optimal properties in the context of testing and estimation. Specif-
ically, the likelihood ratio test is the most powerful test (Neyman and Pearson, 1933)
and maximum likelihood estimators are unbiased estimators reaching the Cramér—Rao
lower bound.

Pivotised sample equivalents of the expected score differences are fundamental in
hypothesis tests about the relative performance of two candidate predictive distribu-
tions. In line with the weighted applications we have in mind, we localise the simple
versus simple hypothesis of the Neyman-Pearson lemma into statements about the un-
derlying distribution on the region of interest. By doing so, the hypothesis about the
underlying distribution becomes a multiple versus multiple hypothesis, equivalent to
the hypothesis studied by Holzmann and Klar (2016). Unlike them, we are still able
to derive the uniformly most powerful test for this hypothesis. The test statistic of
this test is given by a localised likelihood ratio, where the localisation is performed by
censoring, and necessarily not by conditioning.

Power analyses based on localised scoring rules have more frequently been studied



for the Giacomini and White (2006) test (Diks et al., 2011, 2014; Holzmann and Klar,
2016; Lerch et al., 2017). The null hypothesis of this test entails that the expected
score difference between one candidate to the actual distribution is equivalent to the
expected score difference between the other candidate and the actual distribution.
A great advantage of this test is that all choices underlying the predictor, such as
parameter uncertainty, can be seen as an integral part of the candidate, therefore also
called prediction methods. For a strictly proper scoring rule, the null implies that both
candidates are necessarily misspecified under the null, namely ‘equally misspecified’.
Yet, since which distributions are equally off from both candidates is determined by
the scoring rule, this means that the null set of the GW test is a function of the selected
candidates and the selected scoring rule, complicating comparisons between GW tests
based on different scoring rules. To illustrate this interplay, we include a parametric
example for which the conditional GW null set coincides with the full parameter space,
whereas the censored GW null is a lower-dimensional subspace of the parameter space.
We also compare the power properties of the GW test of the censored scoring rules
with their conditional counterparts and other commonly used localised scoring rules
like the twCRPS of Gneiting and Raftery (2007). In line with Diks et al. (2011), we
find that censoring often leads to higher power.

The remainder of this paper is organised as follows. Section 2 describes the fun-
damental concepts on which the subsequent chapters rely. Section 3 defines the gen-
eralised censored scoring rule and includes the assumption under which it is shown to
be strictly locally proper. This section also includes a rich collection of examples and
a randomisation procedure, called Z-@Q-randomisation, equivalent to the generalised
censored scoring rule. It closes with our generalisation of the Neyman-Pearson lemma.
Section 4 compares the size and power properties of a test of equal predictive ability

of conditional and censored scoring rules. Section 6 concludes.



2 Scoring rules

2.1 Regular scoring rules

Consider a random variable Y : Q — ) from a complete probability space (2, F,P) to
the measurable space (), G). The goal of a forecaster is to choose a distribution F from a

convex class of candidate distributions % on (), G) that minimises the score divergence
Ds(P|F) := Hs(P) — EpS(F,-)

over &P, where Hg(P) := EpS(P, -) is the negative entropy of P based on S. Adhering
to Gneiting and Raftery (2007), the selected scoring rule S is restricted to be strictly
proper to ensure that the forecaster truthfully reports the actual distribution P as the
best candidate from &, if P € &. Definitions 1 and 2, adopted from Holzmann and

Klar (2017) and Gneiting and Raftery (2007), respectively, formalise both concepts.

Definition 1 (Scoring rule). A scoring rule is any extended real-valued (R := [—o0, 00])
function S : P x Y — R such that S(F,-) is measurable with respect to G and quasi-
integrable with respect to all P € P, for all F € P, and for which EpS(F,-) < co and
Hg(P) € R,VP,F € 2.

Definition 2 ((Strictly) proper scoring rule). A scoring rule S : P x Y — R is
proper relative to P if Dg(P||F) > 0, VP, F € &P, and strictly proper if, additionally,
Dg(P|[F) =0 iff P=F, VP,F € P.

If a scoring rule only uses the p-densities f € 2 of the candidates F € &, it is easier
to work with the densities directly, i.e. to define S : zx) — R and adapt all definitions
in this section accordingly. Yet, this is only possible if there exists a o-finite measure p
on (¥, Q) such that F < u, VF € . Furthermore, the restrictions on S in Definition 1
guarantee a meaningful comparison of the expected score of any candidate with the
negative entropy of the actual distribution, necessary for identifying (strict) propriety.

Since comparisons of candidates F € & are in terms of P-expectations, the forecaster is,



strictly speaking, only forced to report a member from the P-a.s. equivalence of P when
using a strictly proper scoring rule. For clarity, we henceforth suppress technicalities
about P-a.s. equivalence. Definition 2 additionally shows that a score divergence is
a divergence measure (see e.g. Eguchi et al. (1985)) if and only if S strictly proper.
For distributions on (Rd, B (]Rd)), where B())) denotes the Borel o-algebra on ), the
particular form of Dg(P||F) makes it a Bregman divergence (Bregman, 1967) under the
conditions listed by Ovcharov (2018).

In their review paper, Gneiting and Raftery (2007) provide an abundant list of
strictly proper scoring rules, which can be divided into two categories: local scoring
rules and distance sensitive scoring rules (Ehm and Gneiting, 2012). We use the same
structure when discussing examples, yet allowing local scoring rules, henceforth called
semi-local, to also depend on the density via a global norm of the density. Within the
class of semi-local rules, we focus on the Logarithmic (LogS) (Good, 1952; Toda, 1963),
Quadratic (QS) (Brier, 1950) and (SphS) (Roby, 1964; Good, 1971) scoring rules as
well as their generalisations to the Power (PowS,) and PseudoSpherical (PsSphS,,)
families. Our selection of distance-sensitive scoring rules fits into the family of Energy
Scores (ES), a subclass of the class of strictly proper scoring rules given by Theorem 5 of
Gneiting and Raftery (2007), nesting the real-valued Continuously Ranked Probability
Score (CRPS) (Matheson and Winkler, 1976; Hersbach, 2000) as a special case.

The inclusion of the PowS, and PsSphS, families, sharing LogS as a common
limiting case for « | 1, is partly due to the connection with the expected utility
maximisation problems described by Jose et al. (2008). After all, the duality with
specific investment problems based on the one-parameter Hyperbolic Absolute Risk
Aversion (HARA) utility function family, generated by the absolute risk tolerance
function 7, (x) = f + az, with 8 =1 (Merton, 1971, p. 389), gives « its interpretation
as a risk tolerance parameter. Their introduction and axiomatic characterisation are
found by Shuford et al. (1966), Savage (1971), Selten (1998) and Jose (2009), though
we work with their continuous generalisations provided by Gneiting and Raftery (2007)

and Ovcharov (2018).



2.2 Weighted scoring rules

In many applications, particular outcomes are of particular importance. To emphasise
regions of the outcome space, a forecaster with scoring rule S is assumed to select a
weight function w € W, that is, any G-measurable map w : J — [0, 1]. The forecaster’s
weight function is zero for outcomes that are of zero interest. Hence, differences in
candidates expressed only on {w = 0} := {y € Y : w(y) = 0} are ideally not accounted
for by the scoring rule. Therefore, we restrict the analysis to the class of localising

weighted scoring rules given by Definition 3, borrowed from Holzmann and Klar (2017).

Definition 3 (Localising weighted scoring rule). A weighted scoring rule S, that is,
amap S : PxYxW = R such that S,(-,-) is a scoring rule for each w € W, is

localising if for any P, F € P, w € W, it holds that

VE€G:P{w>0}NE)=F{w>0}NE) = Su(P,y) =Su,(F,y), Yy ).

Considering the indicator weight function w(y) = 14(y), taking the value 1 if
y € A, and 0 otherwise, it is obvious that a localising so-weighted scoring rule cannot
be strictly proper. Indeed, any distribution P equivalent to P on A is assigned the
same score. Therefore, we instead aim for strictly locally proper weighted scoring rules,

initially defined by Holzmann and Klar (2017) and included below as Definition 4.

Definition 4 ((Strictly) locally proper scoring rule). A weighted scoring rule S : P x
VY xW — R is locally proper relative to (P, W) if it is localising and Sy (-, -) is proper for

each w € W. Furthermore, it is strictly locally proper relative to( P, W) if, additionally,

P({w>0}NE)=F{w>0}NE),YE€G = EpSy(P,) =EpSy(F,-), Yw € W.

Before turning to our solution to weighting scoring rules, we first recall two weight-
ing procedures contained in the literature. First, the recipe S, (F,y;w) = w(y)S(F,y)
proposed by Amisano and Giacomini (2007) for the Logarithmic scoring rule is clearly

not strictly locally proper. Indeed, as shown by Example 1 of Diks et al. (2011), it does



not rule out scoring rules that are completely determined by a region where one candi-
date density dominates the other, yielding a higher expected score for the dominating
one, irrespective of the actual distribution.

A second recipe failing to deliver strictly locally proper scoring rules is the condi-

tional scoring rule

1
SE(F,y) = S(F! dFt .= dF,,
w(Ey) = w(y)S(Fy, v), v E )

proposed by Holzmann and Klar (2017). This rule applies the regular scoring rule
to the conditional distribution FEJJ, here defined as the weighted kernel dF,, := wdF
scaled (sharpened) by a factor 1/F,()). Again, this scoring rule completely ignores
outcomes in {w = 0}. Though now, the distribution is adjusted accordingly, making
the scoring rule locally proper. However, since it cannot discriminate between distri-
butions that are proportional to each other on {w > 0}, it is not strictly locally proper
(Holzmann and Klar, 2017). Figure la illustrates the potential consequences of this
lack of discriminative ability.

A hint from these examples is that we should not completely forget about {w = 0}
when focusing on {w > 0}. Yet, to stay localising, we can only use information about
a candidate’s distribution on {w = 0} that is implied by the information on {w > 0}.

A clear example of a non-localising weighted scoring rule is the twCRPS,

[o.°]

twCRPS(F,y) = /

—00

w(s) (F(s) ~ Ay(s)) ds,

for weight functions of the kind w(y) = 1j,, ,,)(y), where 71 < r2 and 71,72 € R. The
piecewise Student-t(v1, 9, v3) example displayed in Figure 1b shows that the cumu-
lative character of the CDF destroys the localisation to A = [r,r2] = [—1,1]. Here
in particular, we selected a distracting candidate G that is similar to P outside A
in the sense that v1¢ = rip = 3 and 3¢ = v3p = 40, but different on A, with
3 = g < rp = 5. In contrast, v = vop, while 1p = v3p and vip = v3p.

The fact that Dywerps(P||F) > Diwcrps(P||G), while F and P coincide on A, re-
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veals that the twCRPS is distracted by the good fit of G outside A. Since the bias
Diwerps (P||F) — Diwerps (P||G) = 0.028 is the sole consequence of the weighted scoring

rule being non-localising, it is henceforth referred to as a localisation bias.

Figure 1: Non-strictly locally proper scoring rules
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(a) Laplace (b) Piecewise Student-t

Note: (a) The densities f and g are both from the Laplace family with common scale parameter § = 1, but
different location parameter 1y = —1 and pgy = 1. Since Laplace tails are known to be proportional for
members of equivalent scale, it follows that St (f,y) = S%(g,y) on A = (—o00, —2), while f # g on A.
Therefore, S¥ cannot be strictly locally proper, e.g. consider p = f. (b) f, g and p are all piece-wise
Student-t, constructed such that f =p # g on A = [—1,1]. More specifically, the density f(y;vr) is the
%1%—1 +q(y;ver)L-1<y<1 + q(y; v3r) 38523 Lyst.
As a result of its non-locality, the twCRPS implies a score divergence indicating g to be statistically closer

normalisation of the kernel f(y;vr) = q(y; vir)

to p on A than f. Since p= f # g on A, the twCRPS is therefore not strictly locally proper.

3 Localising scoring rules by censoring

3.1 Censored scoring rule

To overcome issues like the non-strictness and non-locality of the weighted scoring
rules discussed above, we propose to use censoring as focusing mechanism. Censoring
(Bernoulli, 1760) is a statistical concept that is used in econometrics to model a de-
pendent variable whose value is only partially known (Tobin, 1958). More specifically,
for realisations in A€, the complement of A, it is only known that they are not in A.

Events in A¢ are hence indistinguishable after censoring and ‘A’ could therefore be

11



viewed as a single outcome of the censored random variable. To avoid confusion, we
label observations in A€ by ‘x’ rather than ‘A€’ itself, which is nothing but an abstract

event for which one can alternatively read ‘NaN’. The censored random variable

Y, YeA,

*

, Y e A°

is defined relative to the extended measurable space (V*,G*), where Y* = YU {x} and
G* = 0({G, *}), that is, the smallest o-algebra containing the collection {G,*}. Similar
to the conditional distribution, we extend the definition of the distribution of Yf‘ to

general weight functions w € W. In particular, we define the censored distribution as

dF? = dF,, + Fuds,,  F, = / (1-w)dF, weW,Fe® (1)
y

where 0, denotes the Dirac measure at *, i.e. §,(F) = 1g(*). To make this change of
measure well-defined, we consider the original measures F € 9 relative to the extended
measurable space (V*,G*), by defining F(x) = 0 and taking some value for w(x). In
case F <« 1, VF € &P, we are invited to work with the p-densities f € 2 instead, and

their associated (u + d,)-densities
fqli;:wf]ly;é*+Fw]1y:*, weW, fe€n. (2)

A detailed proof of this result is deferred to the Online Appendix. Albeit restricted
to w(y) = 14(y), Borowska et al. (2020) also work with an explicit formulation of the
censored density, coinciding with fZ in the context of maximum likelihood. Here fﬁl is
preferred notation for f]bl K

Ideally, the censored scoring rule would be given by S%(F,y) = S(F’, %), as this
would fully respect the forecaster’s specific choice of the regular scoring rule S. The
censored scoring rule given by Definition 5 reduces to this definition for the indicator

weight function w(y) = L 4(y). The censored scoring rule is also attractive for general
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weight functions, but this will be particularly clear from the randomisation perspective
taken in Section 3.3, which yields a similar identity for general weight functions; see
Equation (4). According to Theorem 1, the censored scoring rule is strictly locally
proper. Since Theorem 1 is a corollary of Theorem 2, we have sustainably omitted a

proof for this result.

Definition 5 (Censored scoring rule). Let S : P xY — R, P = {F’, F € P, w € W},
denote a scoring rule. Then, the corresponding censored scoring rule is given by the

map S*: PxY x W = R,

S (F,y) == w(y)SE,. y) + (1 — w(y)) SE, *),

where the censored distribution F°, is defined in Equation (1).

Theorem 1. Suppose that the reqular scoring rule S is strictly proper relative to 5.
Then, the censored scoring rule S° in Definition 5 is strictly locally proper relative to

(P.W).

The assumption in Theorem 1 ensures that the scoring rule is well-defined with
respect to mixed continuous-discrete distributions on (Y*, G*). We will verify that this
assumption holds in the examples discussed in Subsection 3.4.

Let us conclude this section by providing some intuition for the result of Theorem 1.
Given some weight function w € W, it should be clear that censoring maintains a one-
to-one connection with the original distribution on {w > 0}. This relation can be
harmed by conditioning due to the additional normalisation of the weighted kernel.
This difference is even clearer for indicator weight functions since F'j4 = F, while
F% # F, on A. Because of this, only the censored scoring rule allows for identifying
the original distributions on {w > 0} when comparing two candidates F and G. This
additionally requires disentanglabity of the weighted kernels and discrete probabilities
in the censored measures, implied by F,,(x) = G, (*) = 0. Consequently, the assumed

strict propriety of the original rule localises to {w > 0} for the censored scoring rule.
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3.2 Generalised censored scoring rule

Given the intuition at the end of the previous section, it is not entirely surprising that
one can perform other transformations to the distribution on {w > 0} as long as the
transformation is independent of the distribution and traceable when comparing two
candidate distributions. The latter requirement is formalised by Assumption 1, under
which the generalised censored scoring rule in Definition 6 is still strictly locally proper.

Appendix A.1 details a proof for this result, summarised by Theorem 2.

Definition 6 (Generalised censored scoring rule). Let S : P x Y — R denote a

scoring rule. The associated generalised censored scoring rule is given by the map

S PxY XWX H— R,
S’EU,H(Fv y) = w(y)S(FEU,Ha y)+ (1— w(y))EHS(F’IZU,H7 ) dFZ;,H = dF,, + F,,dH,

where FZ}H is referred to as the generalised censored distribution of F.

Assumption 1. A weight function w € W and nuisance distribution H € 7 C P is

such that 3E € G : F,(E) =0 and H(E) >0, VF € X He Z.

Theorem 2. Suppose that (i) the regular scoring rule S in Definition 6 is strictly
proper relative to P, and (i) W and F are such that Assumption 1 is satisfied. Then,

the generalised censored scoring rule S° in Definition 6 is strictly locally proper relative

to (PW, 7).

Finally, a corollary of Lemma 3 in the proof of Theorem 2 in Appendix A.1 is that
D, (FIG) = Ds(F [ 0. 3)

i.e. the censored score divergence from F to G is the score divergence of the correspond-
ing censored distributions. In particular, this means that we have identified a family of
so-called localised divergence measures, satisfying the properties of a divergence mea-

sure (see Subsection 2.1) on {w > 0}. Indeed, if S is strictly proper, such that Dg is a

14



divergence measure, it follows that D, H(FHG) > 0, with strict equality if and only if

F(EN{w > 0}) = G(EN {w>0}), VE € .

3.3 Z,Q-Randomisation

The (generalised) censored scoring rule in Definition 5 (6) of the previous section can
alternatively be formulated in terms of a randomisation procedure. This procedure
relies on an auxiliary random variable Z,,, indicating, conditional on the realisation y,

whether the observation is censored or not. More specifically, we let

b Y, Ly =1,
Yz, = ¢ Zw), oy, Zw) =

where Z,|(Y = y) ~ BIN(l,w(y)). By working out the conditional expectation,
it is obvious that Y = Ez,|(v=y)»(Y, Zy) coincides with the specification of the
censored random variable in Subsection 3.1. For w(y) = 1 4(y), the random variable Z4
degenerates to being one if y € A and zero otherwise, so that YZbA = Y,Z with probability

one. Correspondingly, the Z-randomisation definition of the censored scoring rule reads

SZ](F7 y) = EZw\Y:yS(Fqbuv bew)a (4)

undeniably equivalent to the censored scoring rule defined by Definition 5.

A similar line of reasoning holds for the generalised censored scoring rule. In addi-
tion to the auxiliary random variable Z,,, we introduce an independent random variable
Q@ with distribution H. Rather than labelling the observation as censored, we now take

a random draw from @ if Z,, = 1, i.e. we define

b Y, ifZ,=1,
Yhw = Pol (Y, Zuw, Q);  Pwn(Y, Zuw, Q) =
Q, if Z,=0.

As anticipated, the distribution of Yfl’w = Ez, |v=v)up(Y, Zy) coincides with the

15



specification of FZ)H in Equation (1). Additionally, the generalised censored scoring

rule of Definition 6 admits the Z, Q-randomisation representation

Stw(Fsy) =Bz, (v=y)1S (Foo s Y1) -

The randomisation perspective further clarifies why Sfb{’w generalises S (F,y). In-
deed, by choosing a degenerate distribution for Q) at *, each ‘random draw’ from @ will
be precisely the censoring label * of the Z-randomisation procedure. Put differently,

Sﬁw = S (F,y) for H=6,.

3.4 Examples

3.4.1 Semi-local scoring rules

We will now apply our censoring framework to the regular scoring rules introduced
in Subsection 2.1. Following the classification into semi-local and distance-sensitive
scoring rules, we start with localising the former class. Together with the main char-
acteristics of the LogS, PowS, and PsSphS, families, Table 1 presents the localised
versions of these families based on conditioning, censoring and generalised censoring.
Given the strict propriety classes in Table 1, one can easily verify their strict propriety
with respect to £, since ||f2[|2 < 1+ ||f||2 < oo, Vf € fu, Yw € W, where a = 1
for LogS. Furthermore, the Bregman generator functions ((t) refer to the well-known
subclass of separable Bregman divergences, consisting of the score divergences based on

strictly proper scoring rules S¢ : 2(Y, G, 1) x Y — R of the form

Sc(pry) = ¢'(p(y)) — /y ¢ pw)pw) — C(p(y))udy).

Comparing the censored and conditioned versions of the rules, we notice that the
censored variants bear an isolated F,-dependent term, preserving the coverage proba-
bility of {w = 0}. While preserving the likelihood F), of being censored, Table 1 also

shows that the censored scoring rules are independent of *, the label of a censored
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observation. Hence, for this selection of scoring rules, one could alternatively work
with an actual number like r for the location of the residual probability F,,. Strictly
speaking, we need to require F,,(r) = 0 in that case, to keep the censored scoring
rule strictly locally proper (see Assumption 1), but this is trivially met by restricting
to either continuous measures or weight functions satisfying w(r) = 0, or both. The
generalised censored scoring rules in Table 1 show that the invariance with respect to
the location of the discrete probability mass holds more generally. In particular, the
generalised censored scoring rules turn out to be entirely invariant to the choice of the
nuisance density on {w = 0} upon normalisation by the a-norm of h, i.e. to the class
of densities h = h/||h||o , where a = 1 for LogS. Since ||h|; = 1, the latter means
that LogS is invariant to the unnormalised choice of h, as can be seen from Table 1.
Finally, Table 1 includes the localised divergence measures D Sb which are all localised

Bregman divergences since all regular divergences Dg in this table are Bregman.

3.4.2 Distance sensitive scoring rules

A rich class of distance-sensitive scoring rules is the Energy Score family
1 -
ESs(F.y) = SErllY = YI|; ~E[Y —yll;,  £€(0,2),

known to be strictly proper to the class of Borel probability measures on R¢ such that
IEFHYHg < oo (Gneiting and Raftery, 2007). From this expression, it is immediately
clear that the corresponding censored ES family depends, in contrast to the semi-local

scoring rules, on *, or more particularly, the distance d(y) = ||y — *||2. Specifically,
b 1 vall: 8 8
SwaF,y) = §EF;{UHY - Y5 - EFQU (w(Y)HY -yl + (1 - w()’))d(Y) )

Of course, it is not surprising that distance sensitive scoring rules are sensitive to the
location of the discrete probability F,,. An easy way to define d(y) is to simply add
the location of F,, by choosing * € R?. It is important, however, to keep in mind

that the censored scoring rule is not invariant with respect to this additional piece of
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information. More precisely, the selected value for *, say r, is now not only representing
the event of being censored but also the value an observation gets after being censored.

Assuming that the weight function at hand has a finite number of pivotal points
A= {a;}*,, e.g. the edge(s) of an indicator function, the centre of a kernel, etc., we

consider the following two choices for the censored distance

(1) drand(y) = Hy - n_la Z:L:al a;

(i) dmin(y) = ming [y — a|
The first suggestion is equivalent to taking r = n% >oie a;, making it straightforward
to show that Theorem 1 applies. The second suggestion does not necessarily reduce to
a choice for r. Though, since this choice is in line with the assumptions of Theorem 1
of Székely and Rizzo (2005), one can still easily verify the assumption of Theorem 1.
We illustrate the role of the censored distance by two concrete examples. For the
left-tail indicator function (the same holds for the right-tail indicator), Example 1 shows
that both choices for d lead to a censored scoring rule coinciding with the twCRPS.
This is an interesting result since the twCRPS is strictly locally proper for precisely
these two types of weight functions (Holzmann and Klar, 2017, Theorem 5). Indeed,
for the centre indicator function w(y) = 1|_,,(y), the twCRPS is knowingly failing to
be strictly locally proper since it is non-localising. The corresponding censored scoring
rules following from the censored distances in Example 2 are strictly locally proper and
hence also still localising. In sharp contrast to the twCRPS, the censoring procedure
enforces the weighted scoring rule to be localising by considering anything outside

[—7,7] as the same event. In this way, the censored rules prevent for the localisation

bias introduced in Subsection 2.2, illustrated by Figure 1b.

Example 1. Consider the CRPS, i.e. the ES, family for d = 1 and take w(y) =
1 (—oomy(y) as weight function. Following the examples of pivotal points of weight
functions, we let ng, = 1 and a; = r. The associated censored distances become

dmin(y) = |y — r| and dyana(y) = |y — r|. Hence, the choice of both censored distances
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reduce to replacing * by r, leading to the scoring rule

CRPS,,,  (F,y) = CRPS, , (F,y)
1 -
= SEp |V = V|~ Ep, (w(@)Y =yl + (1 - w()|Y - 7|)

= twCRPS(F,y).

Example 2. Consider the CRPS and the centre indicator function w(y) = 11_,,1(y),
for which ay = —r and ag = r. The censored distances read dmin(y) = |y — | Ay + 7]
and dyana(y) = |y|. Both censored scoring rules do not coincide with the twCRPS, at
which one arrives if we would put observations below —r equal to —r and observations
above r to r. The latter is clearly not an example of a censored scoring rule, since it
uses information outside the region of interest that is not implied by the information
within the region of interest. The use of this additional information makes the twCRPS
non-localising and hence prone to the localisation bias illustrated by Figure 1b. The
verification of the strict propriety of the CRPS on the extended outcome space R* with

censored distance dpmin(y) = |y — r| Ay + | is deferred to the Online Appendiz.

Expanding upon the centre indicator example discussed in Example 2, it should be
noted that the distances dpyin and dyang sometimes result in distances |y — *| that are
significantly off. For example, dpi, can differ greatly from the non-censored distance
between an observation y € A near —r and a censored observation located far into the
right tail of the distribution before censoring. Although these errors to some extent
cancel each other out, this observation can also serve as an inspiration for improvement.

In particular, we suggest to alternatively use the generalised censored distribution
dF’, = dFy, + Fy(ydda, + (1 —7)dda,),  a1,a2 € R,y € [0,1], (5)

distributing the residual probability F,, over the pivotal points a; and as with propor-
tions v and 1 — =, respectively.

Unlike the twCRPS, this measure does not rely on the location of observations
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outside the region of interest, except for the fact that they are not in A. The measure is
a generalisation of the censored measure at a single critical point, and can in turn easily
be verified to n, pivotal points by taking dH = "¢, 7;dd; as reference distribution,
with v; restricted to the unit simplex A(n) to maintain H as a probability measure. The
choice of parameter v depends on the specific application. For the indicator function
w(y) = 1_,,) in Example 2, it is appropriate to select v = % when comparing the
predictive performance of two candidates that are both symmetric around zero.

The parameter v depends on the application at hand. For the indicator function
w(y) = L_,, in Example 2 it makes sense to choose v = % if one aims to compare
the predictive ability of two candidates that are both symmetric around zero. In these
types of applications, data is typically available to estimate the proportion of residual
probabilities of the candidates based on the DGP. It is important to note that using the
data instead of the candidates to estimate -, sets a level playing field for the candidates
in terms of their performance on A. After all, this approach ensures that the relative
performance of the candidates on A is not obscured by the performance outside A (for
the part that is not entirely implied by the distribution on A).

Mathematically, we can illustrate the difference between the generalised censored
scoring rule based on the censored measure in Equation (5) and the twCRPS as follows.
For the centre indicator function w(y) = 14(y), where A = [aj,a2], we have the

following equality

twCRPS(F,y) = CRPS(F,,yl), dFl, = dFy, + Fy(yrdda, + (1 — vr)dda,)

where y¢ = F,/Fy, Fur, = F(AL), Af = (—o0,a1). Furthermore, y:ru = yla(y) +

a1l ag (y) + a2llag (y), with AR = (ag,00), allowing the twCRPS to assign different
scores to observations in Af and Af. One crucial distinction between the generalised
censored measure and FL is that the latter candidate’s reference distribution depends
on the candidate itself, namely through the dependence of the proportion parameter

on F. In expectation, the difference between the twCRPS and the generalised censored
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scoring rule reduces to precisely this difference between v = P,/ P, where P denotes

the underlying distribution of Y, and ~r. Specifically,
EptwCRPS(F,Y) = EpCRPS] (F,Y),

where the only difference between CRPS] and CRPSEU is the dependence on F}, rather

than F? , i.c.

CRPS(Fl,, ), ifye A
CRPS] (F,y) =

~YCRPS(Fl,, a1) + (1 — 7)(Fl,, a), ify € A°,

which, contrary to the twCRPS, does not depend on whether an observation is in Ay,
or Ag.

For centre indicator case, for which the twCRPS is not strictly locally proper and
hence not a generalised censored scoring rule, we have now derived the alternative
(close to censoring) procedure, which is helpful in two ways. (i) By revealing the recipe
for obtaining the twCRPS, we uncovered the multivariate twCPRS for practioners
that are despite the localisation-bias still willing to use the twCRPS in a multivariate
setting. (ii) We have uncovered precisely the difference between the twCRPS and the
generalised censored scoring rule, i.e. 7 versus qr in the definition of the focused

measure.

3.5 Localised Neyman—Pearson

In anticipation of our favourite applications, we now switch to an explicit time series
context. In particular, consider a stochastic process {Y; : Q — y}le from a complete
probability space (2, F,P) to a measurable space (Y7, GT), where YT and G7 denote
the product outcome space and o-algebra of the individual outcome spaces ) and o-
algebras G, respectively. The process generates the filtration {.7-}}?:1, in which F; =

o(Y1,...,Y;) is the information set at time ¢, satisfying F; C Fy41 C F, Vt. We denote
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predictive distributions of Y1 based on F; by Fy, predictive distribution functions
by F; and predictive ps-densities by f;. The existence of the sequence of densities
f+ is implied by the existence of a sequence of measures {y} such that Fy < g, Vt.
Furthermore, the regions of interest A; C ) are always assumed to be F;-measurable.

The aim of this section is to derive a uniformly most powerful (UMP) test for the

following null and alternative hypothesis
Ho : potla, = forla,, V&t vs  Hy:pula, = fula, Vt (6)

Although the predictive densities fj; = g_/ii’ j € {0,1}, are assumed to be known,
the testing problem remains a multiple versus multiple hypothesis test due to the
lacking specification of the density outside the regions of interest A;. Yet, since the
densities p;; must integrate to one on A; U Af, the null hypothesis does imply that
these densities integrate to Fj;(Af) on Af. Therefore, the implied specification on Af
can be summarised as

Fji(A°)

— N c = : ¢ : : c ]
H]t(Ac) h]t]lAt F]t(A )[h]t]AgllAﬂ JE {07 1}7

where the unknown densities hj; = g_;i: can be seen as infinite dimensional nuisance
parameters.
Explicitising the implied assumption on Af in the hypotheses and phrasing them

in terms of a statement about the whole sample distribution leads to the following

equivalent hypotheses
T-1
Hy : py(y) = T (fiews)a (o) + Fie(A%) sl (e Lag () ) o 5 € 10,1},

t=0

Since the densities f;; are fixed, and the densities hj; are unrestricted under both

hypothesis, the class of densities satisfying hypothesis H; can alternatively be written
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as

T-1
25 = {H (fj(yt-‘rl)]lAt(yt—f—l) + th(Ac)[hjt]&g(yt—kl)]lAf(yt—i—l)) hj € ﬁ} . j€{0,1},
t=0

in which Z denotes the space of all densities on A° = HZ:OI Af.

Let ¢ : YT — [0,1] denote a test function determining which values should be
included in the critical region. In terms of the index set of all observations Z =
{1,...,T}, this space can also be denoted as Y(Z) = [[,c7 Vs- The aim of this section
is to find a uniformly most powerful (UMP) test ¢* of size a for testing problem (6),

i.e. a solution to the maximisation problem

ax [E,, ¢, P(a) = : sup E < a}. 7
ngq)(};) pr® (o) = {0o polelgo p® < a} (7)

As a first step toward the solution, given by Theorem 3, let us fix an hy € % so that
the distribution under the alternative is completely known. Given the fact that the
hypotheses are, in the end, silent about the shape of the density on A°, we conjecture
that a UMP test neglects the information about the shape of the density on A¢. If
T = 2, for example, and we consider the optimal test on A; x AS, our intuition is that
an optimal test does not care about the shape of [hg]%c, that is, the specific values
[hg]ﬂAf(yg) for all y2 € A€, but just about the total probability of an outcome falling
into A§. In other words, we expect that a solution to problem (7) has integrated out
the dependence on the nuisance densities.

Although it is obvious that marginalising out the still assumed to be fixed density
hy € /4 is harmless in terms of power, it is non-trivial that this is an affordable strategy
in terms of size for all Ay € %Z. Lemma 1 and its proof show that the subclass of tests
disregarding information about the shape of h; is guaranteed to be size correct. In our
search for the UMP test, Corollary 1 then formalises the idea that we can restrict our

attention to tests of the conjectured kind.

Lemma 1. Consider testing problem (6) and suppose that the outcomes (yt)icz, are
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in A¢, and the remaining n — k, with k = |Za|, observations (y)iez,. in Af. For an

arbitrary but fived density hy € %, the test

whl :yT — [07 1]7 ?/)hl :/ d);;/l H [h‘lt]%f]lAfd'u't
Y(Zac)

teZL pc
where ¢}, denotes a solution to problem (7), is such that ¢y, € ®(a).

Corollary 1. Consider testing problem (6) and suppose that the outcomes (yi)iez,
are in A¢, and the remaining T — k, with k = |Z4|, observations (y¢)iez,. in A7. Let
U(a) C ®(a) denote the class of size a tests on YT that are constant in arguments
varying in Y (Zac). Then,

E, ¢= E,, ¥, Vhy € %.
sl ® = g B '

For any fixed hy € 7%, the reduced optimisation problem resulting from Corol-
lary 1, simplifies to a simple versus simple hypothesis in terms of the censored mea-
sures d[Fj,g]';LS = 1 4,dFj;+F;(A§)dd,, enabling us to formalise a localised version of the

Fundamental Lemma of Neyman and Pearson (1933), included below as Theorem 3.

Theorem 3 (Localised Neyman-Pearson). The UMP test for testing problem (6) is

given by
L, ifAMy)>c
a(y) = ) e A =B e Tl )
AT = [fola(v)’ ’ o ’
\0, if My) <c

where j € {0,1} and c is the largest constant such that [Fol’ (A(y) > ¢) > a and
[Foly(Ay) < ¢) > 1 —a, and v € [0,1] is such that o = [Fo],(\y) > ¢) +

YFo4 (AMy) = ¢).

It is worth emphasising that the obtained equivalence between testing problem (6)
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and H; : p; = [fj]l;lt’ j € {0,1}, is a priori unobvious, since
pi = (Fa+F (Al tae) = s = [l

but not the other way around. Formulated differently,
He - [plb = [£]°
j 2 [pila = [fila

is a multiple versus multiple hypothesis about p; (for example satisfied if p; = | fj]i&)?
but a simple versus simple hypothesis about [pj]lj4. Furthermore, we have included an
example for the special case that T" = 1 in the Online Appendix, showing that we arrive
at the same solution as Holzmann and Klar (2016) for this special case.

We close this section with two corollaries of Theorem 3, the proofs of which are
deferred to the Online Appendix. Corollary 2 reveals that, unsurprisingly, the localised
NP test given by Theorem 3 can alternatively be formulated by the censored likelihood
score of Diks et al. (2011). Corollary 3 ensures that the conditional operator does
not bear a UMP test too, making the censored operator strictly preferred over the

conditional one in the current setting.

Corollary 2. Another formulation of the UMP test for testing problem (6) is given
by the test defined in Theorem 3, with A(y) replaced by :\(y) = ;‘F:_Ol (Sj";l(flt,ytﬂ) —
Sfftl(fot, ytH)), where Sj_’ftl denotes the censored likelihood score (csl) proposed by Diks

et al. (2011).

Corollary 3. For testing problem (6), the test

1L, ifM(y)>c

T
) =S i Ny) =c Ai<y>=—§m<y>, il (y) = [T, ().

0, ifM(y)<e

where j € {0,1} and c is the largest constant such that [Fo]

w
>
<
v
&
Y
S
)
2
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Foly(\y) < ¢) > 1—a, and vy € [0,1] is such that a = [Fo}(My) > ¢) +

Y[Fol% (\(y) = ¢), is not UMP.
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