Comments on

"Demand Learning and Firm Dynamics: Evidence from Exporters"

by N. Berman, V. Rebeyrol, and V. Vicard

J. Tybout

Penn State University and NBER

June 26, 2015

Bayesian learning model of exporter behavior

 This paper views the association between exporter stability and age through the lens of a Bayesian passive learning model.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 isolates a demand learning effect and finds it to be quantitatively important.

Bayesian learning model of exporter behavior

- This paper views the association between exporter stability and age through the lens of a Bayesian passive learning model.
- isolates a demand learning effect and finds it to be quantitatively important.

Key assumptions

- Firms' demand shocks are market-specific
- Transitory demand changes are exogenous and *iid*
- Firms' marginal cost shocks are general to all goods produced

Bayesian learning model of exporter behavior

- This paper views the association between exporter stability and age through the lens of a Bayesian passive learning model.
- isolates a demand learning effect and finds it to be quantitatively important.

Key assumptions

- Firms' demand shocks are market-specific
- Transitory demand changes are exogenous and *iid*
- Firms' marginal cost shocks are general to all goods produced

Things to like

 clean decomposition of exports into learning effect, cost effect, and destination market effect

Bayesian learning model of exporter behavior

- This paper views the association between exporter stability and age through the lens of a Bayesian passive learning model.
- isolates a demand learning effect and finds it to be quantitatively important.

Key assumptions

- Firms' demand shocks are market-specific
- Transitory demand changes are exogenous and *iid*
- Firms' marginal cost shocks are general to all goods produced

Things to like

 clean decomposition of exports into learning effect, cost effect, and destination market effect

econometric exercises tightly linked to model

Bayesian learning model of exporter behavior

- This paper views the association between exporter stability and age through the lens of a Bayesian passive learning model.
- isolates a demand learning effect and finds it to be quantitatively important.

Key assumptions

- Firms' demand shocks are market-specific
- Transitory demand changes are exogenous and *iid*
- Firms' marginal cost shocks are general to all goods produced

Things to like

- clean decomposition of exports into learning effect, cost effect, and destination market effect
- econometric exercises tightly linked to model
- considerable attention to robustness issues and alternative interpretations for the results.

Implications

A form of hysteresis

- knowledge is at least partly irreversible.
- Once induced to enter a market, exporters tends to stick around.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Implications

• A form of hysteresis

- knowledge is at least partly irreversible.
- Once induced to enter a market, exporters tends to stick around.
- **•** Time dimension is significant.
 - Demand signals still matter after 7 years in the market, though they are half as important as they were in the first year.
 - Yet all knowledge is lost after several years absence, so the lengthy learning process reboots upon re-entry.

The horse race

Horses allowed to run

- passive demand learning
- firm-specific productivity shocks; process unconstrained

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

destination market general expenditure shocks

The horse race

Horses allowed to run

- passive demand learning
- firm-specific productivity shocks; process unconstrained
- destination market general expenditure shocks

Horses neither allowed to run nor discussed

market-specific learning by doing or learning by exporting

- learning from rivals
- consumer learning (reputation effects)

The horse race

Horses allowed to run

- passive demand learning
- firm-specific productivity shocks; process unconstrained
- destination market general expenditure shocks

Horses neither allowed to run nor discussed

- market-specific learning by doing or learning by exporting
- learning from rivals
- consumer learning (reputation effects)

Horses not allowed to run, but discussed

- growth in idiosyncratic demand due to investments in marketing, relationship building ("active learning")
- firms drawing poor sequences of demand shocks drop out ("selection effects")

Alternative mechanisms

▶ Ericson/Pakes test is suggestive, but less than definitive

• with adjustment costs, effects of old productivity shocks linger.

 explanations for relative stability of large firms don't necessarily involve learning.

Alternative mechanisms

Ericson/Pakes test is suggestive, but less than definitive

- with adjustment costs, effects of old productivity shocks linger.
- explanations for relative stability of large firms don't necessarily involve learning.

Selection effects may be important

- Are the mean growth effects in Table 3 based on an unbalanced panel?
- In a model without learning, Arkolakis (forthcoming) finds growth rates are higher among younger firms because of selection.
- Results on declining variance of growth rates sensitive to controlling for selection (though qualitatively robust).

Alternative mechanisms

Ericson/Pakes test is suggestive, but less than definitive

- with adjustment costs, effects of old productivity shocks linger.
- explanations for relative stability of large firms don't necessarily involve learning.

Selection effects may be important

- Are the mean growth effects in Table 3 based on an unbalanced panel?
- In a model without learning, Arkolakis (forthcoming) finds growth rates are higher among younger firms because of selection.
- Results on declining variance of growth rates sensitive to controlling for selection (though qualitatively robust).

On the timing assumptions

Firms choose their quantity levels before they see the current period signal; then prices adjust to clear the market.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

On the timing assumptions

Firms choose their quantity levels before they see the current period signal; then prices adjust to clear the market.

Decisions are made once per calendar year.

On the timing assumptions

Firms choose their quantity levels before they see the current period signal; then prices adjust to clear the market.

- **Decisions are made once per calendar year.**
- But typical Colombian exporter makes about 8 shipments per year.
 - Authors do show that sectors with higher input intensity or time-to-ship show stronger results.
 - Could also limit to industries with low shipment frequencies as additional robustness check.

• Identification of σ_k

$$\ln Z^{p}_{ijkt} = \beta \ln Z^{q}_{ijkt} + v_{ijkt}$$

where

►
$$\ln Z_{ijkt}^{p} = \ln p_{ijkt} - FE_{ikt}^{p}$$

► $\ln Z_{ijkt}^{q} = \ln q_{ijkt} - FE_{ikt}^{q} - FE_{jkt}^{q}$

• Identification of σ_k

$$\ln Z^p_{ijkt} = \beta \ln Z^q_{ijkt} + v_{ijkt}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

where

►
$$\ln Z_{ijkt}^p = \ln p_{ijkt} - FE_{ikt}^p$$

► $\ln Z_{ijkt}^q = \ln q_{ijkt} - FE_{ikt}^q - FE_{jkt}^q$

The structure of the model implies:

$$\begin{aligned} & \mathsf{In} \ Z_{ijkt}^{q} = \sigma_{k} \ \mathsf{In} \ E_{t-1} \left[\mathsf{exp} \left(\frac{a_{ijkt}}{\sigma_{k}} \right) \right] \\ & \mathsf{v}_{ijkt} = \frac{a_{ijkt}}{\sigma_{k}} \\ & \mathsf{\beta} = \frac{-1}{\sigma_{k}} \\ & \mathsf{a}_{ijkt} = \overline{a_{ijk}} + \varepsilon_{ijkt} \end{aligned}$$

• Identification of σ_k

$$\ln Z^p_{ijkt} = \beta \ln Z^q_{ijkt} + v_{ijkt}$$

where

$$In Z^{p}_{ijkt} = In p_{ijkt} - FE^{p}_{ikt} In Z^{q}_{ijkt} = In q_{ijkt} - FE^{q}_{ikt} - FE^{q}_{jkt}$$

The structure of the model implies:

$$In Z_{ijkt}^{q} = \sigma_k \ln E_{t-1} \left[\exp(\frac{a_{ijkt}}{\sigma_k}) \right]$$

$$v_{ijkt} = \frac{a_{ijkt}}{\sigma_k}$$

$$\beta = \frac{-1}{\sigma_k}$$

$$a_{ijkt} = \overline{a_{ijk}} + \varepsilon_{ijkt}$$

► The elasticity estimator is therefore:

$$E\left[\hat{\beta}\right] = \frac{-1}{\sigma_k} + \frac{cov\left[\sigma_k \ln E_{t-1}\left[\exp\left(\frac{a_{ijkt}}{\sigma_k}\right)\right], \frac{a_{ijkt}}{\sigma_k}\right]}{var\left(\sigma_k \ln E_{t-1}\left[\exp\left(\frac{a_{ijkt}}{\sigma_k}\right)\right]\right)}$$

• Expect $\hat{\beta}$ biased toward zero; over-estimation of σ_k

- Overestimation of $\hat{v}_{ijkt} = \frac{a_{ijkt}}{\sigma_k}$ especially among large q observations.
- ► Need to get *a*_{ijk} out of the error, but Z^q_{ijkt} depends on entire history of *v*_{ijkt}

 Perhaps just use ratio of means, as in Eaton and Kortum (2002).

• Expect $\hat{\beta}$ biased toward zero; over-estimation of σ_k

- ► Overestimation of v̂_{ijkt} = ^{a_{ijkt}/σ_k especially among large q observations.}
- Need to get <u>aijk</u> out of the error, but Z^q_{ijkt} depends on entire history of v̂_{ijkt}
- Perhaps just use ratio of means, as in Eaton and Kortum (2002).

A possible selection bias in the other direction

- An unbalanced panel?
- Tend not to observe low realizations on $\frac{a_{ijkt}}{\sigma_k}$ when Z_{ijkt}^q is small.
- Problematic if really do anticipate part of the demand shock.
- Then, tend to overstate steepness of negative slope, β̂; i.e., under-estimate σ_k.

Testing prediction 1

Recall:

• $\hat{v}_{ijkt-1} = \ln Z^{p}_{ijkt-1} - \hat{\beta} \ln Z^{q}_{ijkt-1}$ measures signal in period t-1

• $\Delta \ln Z_{ijkt}^{q}$ measures subsequent adjustment in residual output:

$$\Delta \ln Z^q_{ijkt} = \alpha_0 + \alpha_1^t \hat{v}_{ijkt-1} + u_{ijkt}$$

Testing prediction 1

Recall:

► $\hat{v}_{ijkt-1} = \ln Z_{ijkt-1}^p - \hat{\beta} \ln Z_{ijkt-1}^q$ measures signal in period t-1

• $\Delta \ln Z_{ijkt}^{q}$ measures subsequent adjustment in residual output:

$$\Delta \ln Z^q_{ijkt} = \alpha_0 + \alpha_1^t \hat{v}_{ijkt-1} + u_{ijkt}$$

- ► If $\hat{\beta}$ biased toward zero, \hat{v}_{ijkt-1} exhibits spurious negative corrrelation with $\ln Z^q_{ijkt-1}$.
 - Tends to bias $\hat{\alpha}_1^t$ downward.
 - Over-estimation of
 *v*_{ijkt-1} more severe when ln Z^q_{ijkt-1} is large
 (older exporters), so downward bias could grow with age.

On the orthogonality of the demand shocks

▶ In support of the theory, BRV note (p. 13):

$$corr\left[\ln E_{t-1}\left[\exp(rac{a_{ijkt}}{\sigma_k})
ight], \hat{a}_{ijkt}
ight] = 0.086$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

On the orthogonality of the demand shocks

In support of the theory, BRV note (p. 13):

$$corr\left[\ln E_{t-1}\left[\exp(\frac{a_{ijkt}}{\sigma_k})\right], \hat{a}_{ijkt}
ight] = 0.086$$

▶ But $\hat{a}_{ijkt} = \sigma_k \hat{v}_{ijkt}$, and $\ln E_{t-1} \left[\sigma_k \exp(\frac{a_{ijkt}}{\sigma_k}) \right] = \ln Z_{ijkt}^q \perp \hat{v}_{ijkt}$ by construction, if the regression is done using OLS (and intercept included).

On the orthogonality of the demand shocks

▶ In support of the theory, BRV note (p. 13):

$$corr\left[\ln E_{t-1}\left[\exp(\frac{a_{ijkt}}{\sigma_k})\right], \hat{a}_{ijkt}
ight] = 0.086$$

• But
$$\hat{a}_{ijkt} = \sigma_k \hat{v}_{ijkt}$$
, and
 $\ln E_{t-1} \left[\sigma_k \exp(\frac{a_{ijkt}}{\sigma_k}) \right] = \ln Z_{ijkt}^q \perp \hat{v}_{ijkt}$ by construction, if
the regression is done using OLS (and intercept included).

- Why isn't covariance exactly zero?
 - trimmed \hat{v}_{ijkt} values are used
 - possibly variables don't have zero mean?

Not clear that the covariance tells us anything about the validity of the model's assumption

Summary

- Very nice job of formalizing demand learning and measuring it.
- Key issue: is demand really fixed and exogenous?

Possible refinements:

- use ratio of means to estimate σ
- incorporate selection bias in regression

Exports over domestic sales: Colombia

(a) Ratio of exports to total sales

э.

source: Ruhl and Willis (2014)