A Macroeconomic Model of Endogenous Systemic Risk Taking

David Martinez-Miera Universidad Carlos III

> Javier Suarez CEMFI

2nd MaRs Conference, ECB, 30-31 October 2012

Introduction

- The recent crisis has evidenced the need to incorporate banks & systemic risk in macroeconomic analysis
- Existing macroeconomic models explicit about banks do not yet share a clear notion of **endogenous systemic risk**
- In this paper, systemic risk results from banks' voluntary exposure to an infrequent & large common shock...

which is attractive to them due to standard risk-shifting incentives of levered firms

 $[\Rightarrow$ link to microeconomic literature on bank risk-taking]

- Simple **dynamic equilibrium model** focused on the positive and normative analysis of the effects of **capital requirements** on systemic risk taking
 - Bank capital dynamics is modeled like in other recent papers (e.g. Gertler-Kiyotaki'10)

[Limited wealth of bankers who retain earnings and/or suffer losses from prior investments]

- Bank capital reduces systemic gambling incentives
 - [A micro-banking classic not yet explored by macro papers:
 - * Meh-Moran'10: monitoring incentives a la Holmström-Tirole'97
 - * Gertler-Kiyotaki'10: fund diversion a la Hart-Moore'94]
- Simplifications: risk neutrality, no physical capital accumulation, inelastic labor supply, perfectly elastic deposit supply, DI, etc.

Our modeling of systemic risk taking

- Production technology subject to *failure risk*, which can be:
 - purely i.i.d. (non-systemic firms)
 - highly correlated across firms if a rare large negative shock occurs (systemic firms)
- Firms need bank loans:
 - Lending to systemic firms is *socially inefficient*
 - But banks may find systemic lending *privately profitable* due to the combination of high leverage and limited liability
- Systemic vs. non-systemic lending is not ex-ante distinguishable \rightarrow Flat capital requirement γ
- Banks specialize in one type of lending (and bankers competitively allocate their wealth across bank types)

Key variables

• Capital requirements are satisfied with *inside equity*, i.e. wealth that so-called bankers accumulate via earnings retention

[like in Gertler-Kiyotaki 2010]

- → Single *state variable* is bankers' aggregate wealth *e* * grows quickly if bank profits are high
 - * gets lost if invested systemically and shock realizes
- Two important endogenous variables

v(e) : value of one unit of bankers' wealth

x(e) : fraction of bankers' wealth invested in systemic banks [banks specialize as systemic or non-systemic]

Key insights

- Bankers' systemic gambling incentives are moderated by:
 - Leverage reduction achieved by rising γ
 - Incentives to preserve wealth when other bankers are losing wealth (i.e. when e is low & v(e) is high)
 - \rightarrow Last bank standing effect like in Perotti-Suarez (2002)
- Importantly, a higher capital requirement $\gamma...$
 - Reinforces the last bank standing effect [GOOD]
 - Makes bank capital effectively scarcer at all times
 - \Rightarrow less credit \Rightarrow lower economic activity [BAD]
- We can explicitly analyze the implied welfare trade-offs

Rest of the talk

- 1. Graphical presentation of key results
- 2. Quantitative results
- 3. Extensions / Applications
- 4. Conclusions

Social welfare W as a function of $\gamma \leftarrow$

v(e) and x(e) under low and optimal $\gamma \leftarrow$

Equilibrium dynamics with low and optimal $\gamma \leftarrow$

Equilibrium dynamics with low and optimal $\gamma \leftarrow$

Quantitative results

- Optimal capital requirements: positive and large (14%)
- Comparison $CR=7\% \rightarrow CR=14\%$ (unconditional means)
 - Lower fraction of systemic loans: $71\% \rightarrow 24\%$
 - Higher loan rates: $4.1\% \rightarrow 5.6\%$
 - Lower macro aggregates: bank credit (-21%), GDP (-7%)
 - Higher social welfare: $\simeq +0.9\%$ permanent consumption
- Variation in year-after-shock aggregates:
 - CR=7%: loan rate (+11.6pp), bank credit (-65%), GDP (-32%)
 - CR=14%: loan rate (+2.5pp), bank credit (-24%), GDP (-10%)

Quantitative results (details, 1/3)

T2. Main unconditional means	$\gamma = 7\%$	$\gamma = 14\%$	$\Delta\%$
Welfare (equivalent consumption flow)	2.97	3.00	0.9
GDP	4.40	4.12	-6.5
Bank credit (l)	19.24	15.25	-20.7
Bank equity (e)	1.35	2.14	58.5
Loan rate (r_L) (in %)	4.1	5.6	1.5pp
Deposit insurance costs	0.16	0.04	-76.5
Value of one unit of bank capital (v)	1.12	1.79	61.3
Fraction of equity in systemic banks (x)	0.71	0.24	-65.4

Quantitative results (details, 2/3)

T3. % Change in after-shock period (from PSS)	$\gamma = 7\%$	$\gamma = 14\%$
Aggregate net consumption	-17.3	-4.6
GDP	-31.7	-9.5
Bank credit (l)	-65.3	-24.0
Loan rate (r_L)	11.6pp	2.5pp
Value of one unit of bank capital (v)	160	26
Fraction of equity in systemic banks (x)	-50	-20

Quantitative results (details, 3/3)

T4. Other macro & financial ratios	$\gamma = 7\%$	$\gamma = 14\%$
Labor income/GDP	0.69	0.68
Physical capital/GDP	3.68	3.03
Bank credit/GDP*	4.37	3.71
Deposit insurance costs/GDP	0.036	0.009
ROE at non-systemic banks	0.10	0.17
ROE at systemic banks if no shock realizes	0.19	0.21

[*: suggests *exuberance* due to lax regulation]

Extensions / Applications

 \bullet Transitional dynamics from moving γ and impact on welfare:

There is value (and limits to the value) of applying gradualism in rising γ [Best: moving from 7% to 13% in 10 years]

- Assessment of countercyclical capital requirements
 No net gain from making them countercyclical: bad effect on incentives
- Assessment of recapitalization programs

 $\uparrow e \Longrightarrow \downarrow v(e) \Longrightarrow \downarrow$ last bank standing effect

[Best: as wealth transfers to solvent bankers]

Years of transition

Conclusions

- Dynamic equilibrium model of endogenous systemic risk-taking that
 - allows for a formal assessment of the macroprudential role of capital requirements
 - using an internally consistent welfare metrics
- Results suggest significant effects of capital requirements on systemic risk-taking, macroeconomic & banking indicators, and welfare
- Socially optimal capital requirements are quite high, have a sizeable negative impact on GDP, should be gradually introduced, and should not be lowered after a crisis