# Booms and Systemic Banking Crises

F. Boissay, F. Collard and F. Smets

Second Conference of MaRS, Frankfurt, 30-31 October 2012

The views expressed in this presentation are our own and do not necessarily reflect those of the European Central Bank or the Europystem

- Better understand the joint dynamics of regular business cycles and systemic banking crises (SBCs)
- Account for the few features common to SBCs (Reinhart and Rogoff, 2009; Jordà et al., 2011; Claessens et al., 2011; Schularick and Taylor, 2012):
  - Key Fact #1: SBCs are **rare events** on average 1 every 40 years in OECD countries

- Better understand the joint dynamics of regular business cycles and systemic banking crises (SBCs)
- Account for the few features common to SBCs (Reinhart and Rogoff, 2009; Jordà et al., 2011; Claessens et al., 2011; Schularick and Taylor, 2012):
  - Key Fact #1: SBCs are **rare events** on average 1 every 40 years in OECD countries
  - Key Fact #2: Recessions that follow SBCs are **deeper and last longer** - output loss during a SBC is 60% larger

- Better understand the joint dynamics of regular business cycles and systemic banking crises (SBCs)
- Account for the few features common to SBCs (Reinhart and Rogoff, 2009; Jordà et al., 2011; Claessens et al., 2011; Schularick and Taylor, 2012):
  - Key Fact #1: SBCs are **rare events** on average 1 every 40 years in OECD countries
  - Key Fact #2: Recessions that follow SBCs are **deeper and last longer** - output loss during a SBC is 60% larger
  - Key Fact #3: SBCs are "credit booms gone wrong"

• In most DSGE models with financial frictions banking crises are big negative shocks amplified

< 3 > < 3 >

- In most DSGE models with financial frictions banking crises are big negative shocks amplified
  - Can explain Key Facts #1 & #2

- In most DSGE models with financial frictions banking crises are big negative shocks amplified
  - Can explain Key Facts #1 & #2
  - Cannot explain Key Fact  $\#3 \leftarrow$  SBCs are not random

- In most DSGE models with financial frictions banking crises are big negative shocks amplified
  - Can explain Key Facts #1 & #2
  - Cannot explain Key Fact  $\#3 \leftarrow$  SBCs are not random
- Explaining Key Fact #3 requires to model the economic dynamics leading to SBCs

- In most DSGE models with financial frictions banking crises are big negative shocks amplified
  - Can explain Key Facts #1 & #2
  - Cannot explain Key Fact  $\#3 \leftarrow$  SBCs are not random
- Explaining Key Fact #3 requires to model the economic dynamics leading to SBCs
- From a policy perspective, our framework is a step forward towards:

- In most DSGE models with financial frictions banking crises are big negative shocks amplified
  - Can explain Key Facts #1 & #2
  - Cannot explain Key Fact  $\#3 \leftarrow$  SBCs are not random
- Explaining Key Fact #3 requires to model the economic dynamics leading to SBCs
- From a policy perspective, our framework is a step forward towards:
  - DSGE-based crisis prevention policy analysis

- In most DSGE models with financial frictions banking crises are big negative shocks amplified
  - Can explain Key Facts #1 & #2
  - Cannot explain Key Fact  $\#3 \leftarrow$  SBCs are not random
- Explaining Key Fact #3 requires to model the economic dynamics leading to SBCs
- From a policy perspective, our framework is a step forward towards:
  - DSGE-based crisis prevention policy analysis
  - DSGE-based early warning signals

#### Frequency, magnitude, and duration of systemic banking crises

|                               | Frequency<br>(%) | Magnitude<br>(%)    | Duration<br>(Years) |
|-------------------------------|------------------|---------------------|---------------------|
|                               | (70)             | from peak to trough |                     |
| All banking crises            | 4.49             | -                   | _                   |
| Systemic Banking Crises (SBC) | 2.42             | -                   | _                   |
| All recessions                | 10.20            | 4.86 (5.91)         | 1.85                |
| Recessions with SBC (A)       | 23.86            | <b>6.74</b> (6.61)  | 2.59                |
| Recessions w/o SBC (B)        | 76.13            | <b>4.27</b> (5.61)  | 1.61                |
| Test A $\neq$ B, p-value (%)  | _                | 2.61                | 0.00                |

Source: Schularik et al. (2011), data for 14 OECD countries, 1870-2008

Crises defined as in Laeven and Valencia (2008)

通 ト イ ヨ ト イ ヨ ト

## Stylized facts SBCs follow credit booms; they are not random



- Textbook stochastic optimal growth model (RBC)
- Heterogenous banks endowed with intermediation and storage technologies
- Interbank market subject to MH and AI
- A Systemic Banking Crisis is an inter-bank market freeze
- Spill-over and feedback effects between the interbank market, the retail corporate loan market, and the real economy

 Model features a (small) financial accelerator in normal times; calibrated to generate financial crises every 40 years

< 3 > < 3 >

## Main Results

- Model features a (small) financial accelerator in normal times; calibrated to generate financial crises every 40 years
- The typical banking crisis follows upon an unusually long sequence of small, positive, transitory productivity shocks — Not a large negative financial shock

- Model features a (small) financial accelerator in normal times; calibrated to generate financial crises every 40 years
- The typical banking crisis follows upon an unusually long sequence of small, positive, transitory productivity shocks — Not a large negative financial shock
- SBCs follow credit booms. They occur when the banking sector grows too big relative to its absorption capacity, and when real interest rates are too low

- Model features a (small) financial accelerator in normal times; calibrated to generate financial crises every 40 years
- The typical banking crisis follows upon an unusually long sequence of small, positive, transitory productivity shocks — Not a large negative financial shock
- SBCs follow credit booms. They occur when the banking sector grows too big relative to its absorption capacity, and when real interest rates are too low
- SBCs may occur without shock happening at the same time

- Model features a (small) financial accelerator in normal times; calibrated to generate financial crises every 40 years
- The typical banking crisis follows upon an unusually long sequence of small, positive, transitory productivity shocks — Not a large negative financial shock
- SBCs follow credit booms. They occur when the banking sector grows too big relative to its absorption capacity, and when real interest rates are too low
- SBCs may occur without shock happening at the same time
- SBCs bring about recessions that are deeper and last longer than other recessions because they also come with a credit crunch. The likelihood, depth, and length of these recessions increase with the intensity of the credit boom that precedes it





(日) (周) (三) (三)

• Firm:  $\max_{\{k_t, h_t\}} \pi_t = F(k_t, h_t; z_t) + (1 - \delta)k_t - R_t k_t - w_t h_t$ • Household:

$$\max_{\left\{a_{t+\tau+1},c_{t+\tau},h_{t+\tau}\right\}_{\tau=0}^{\infty}}\mathbb{E}_{t}\sum_{\tau=0}^{\infty}\beta^{\tau}u\left(c_{t+\tau},h_{t+\tau}\right)$$

subject to budget constraint

$$c_t + a_{t+1} = r_t a_t + w_t h_t + \pi_t$$

• Notice that  $r_t \leq R_t$  (spread) and  $k_t \leq a_t$  (credit crunch)

• Interest rate spread:

$$R_t - r_t = \left\{ egin{array}{ccc} \Delta_t^n & ext{if } a_t \leqslant \overline{a}_t \left( z_t 
ight) \ \Delta_t^c & ext{otherwise} \end{array} 
ight.$$
, with  $\Delta_t^c > \Delta_t^n > 0$ 

• Credit crunch:

$$a_t - k_t = \left\{ egin{array}{c} \psi_t^n = 0 & ext{if } a_t \leqslant \overline{a}_t \left( z_t 
ight) \ \psi_t^c > 0 & ext{otherwise} \end{array} 
ight.$$

• Notice that all this is micro-founded

- E > - E >

- Banks face bank specific intermediation costs
- In normal times, inefficient banks lend to efficient banks
- In crisis times, banks do not trust/lend to each other
  - $\bullet\,$  Even inefficient banks do the intermediation  $\rightarrow\,$  higher spread
  - $\bullet\,$  The least efficient banks do not intermediate and store  $\rightarrow$  credit crunch

- The interbank market freezes when banks have too much incentives to misbehave, which happens when the corporate loan rate is "too low", i.e:
  - when  $R_t < \overline{R}$
  - when  $a_t > \overline{a}_t(z_t)$
- Threshold  $\overline{a}_t(z_t)$  is the banking sector's "absorption capacity"
- A measure of financial imbalances is  $\overline{a}_{t}\left(z_{t}
  ight)-a_{t}$

# Quantitative Analysis

Optimal savings rule: exogenous versus endogenous crises



• Variety of SBCs: shock-driven (S) and credit boom-driven (U)

# Quantitative Analysis

Optimal savings rule: exogenous versus endogenous crises



• Variety of SBCs: shock-driven (S) and credit boom-driven (U)

History suggests that credit-boom driven crises prevail

## Quantitative Analysis Typical path to crisis



. . . . . . . .

At the beginning, a positive shock brings TFP above its mean

- Credit demand rises. Return on savings goes up. The household accumulates assets for *consumption smoothing*
- The credit boom is initially demand-driven

IFP goes down back to mean but remains above it for a long time

- Credit demand decreases, while the household keeps on accumulating savings
- The credit boom becomes supply-driven, interest rates go down
- As the probability of a crisis increases, the household accumulates assets for *precautionary motives*, which works to reduce interest rates and to raise the likelihood of a crisis even further
- **④** A SBC breaks out as the corporate loan  $R_t$  rate crosses its threshold  $\overline{R}$

## Quantitative Analysis Typical path to crisis



Financial variables dynamics along typical path

(人間) トイヨト イヨト

## Quantitative Analysis Typical path to crisis



# Real variables dynamics along typical path

# Quantitative Analysis

The role of savings behavior



Comparison with a Solow framework

#### (....) Dynamics in normal times in the Solow version (Benchmark Model), Dynamics in a systemic banking crisis in the Solow version (Benchmark Model), mark Model), .... long-run average. a(7.5%) denotes the banks' absorption when productivity is 7.5% above average.

Boissay - Collard - Smets

• • = • • = •

SBCs are rare and bring about deep and long recessions

#### Frequency, magnitude, and duration of systemic banking crises

|                               | Frequency | Magnitude            | Duration |
|-------------------------------|-----------|----------------------|----------|
|                               | (%)       | (%)                  | (Years)  |
|                               |           | from peak to trough  |          |
| Systemic Banking Crises (SBC) | 2.69      | -                    | _        |
| All recessions                | 10.00     | 12.08 (7.30)         | 2.08     |
| Recessions with SBC (A)       | 13.00     | <b>17.87</b> (10.50) | 2.62     |
| Recessions w/o SBC (B)        | 87.00     | <b>10.04</b> (6.73)  | 1.90     |

## Quantitative Assessment

SBCs follow credit booms ; they are not random



#### Crisis probabilities for the US



 $\underline{\rm Note:}$  The vertical thin dashed lines correspond to the 1984 Savings & Loans, the 2000 dotcom and 2008 crises.

- Develop a simple DSGE model with SBCs
- SBCs are not caused by large, negative, financial shocks but rather by long sequences of small, positive, productivity shocks
- Highlight the role of financial imbalances, consumption smoothing, and precautionary savings
- From a policy making perspective:
  - Framework for both crisis management and crisis prevention
  - DSGE-based probability of a crisis
★ロト ★課 と ★注 と ★注 と 一注



## Quantitative Assessment

SBCs follow credit booms



Figure C.4: Evolution of Various Corporate Loan Spreads

(a) Spread: Corporate loan rates - Federal Fund Rate



---- Trend line.

(日) (周) (三) (三)

#### The Model in a Nutshell

$$\begin{split} y_t &= z_t k_t^{\alpha} h_t^{1-\alpha} + \left(\gamma + \delta - 1\right) \left(a_t - k_t\right) \\ R_t &= \alpha k_t^{\frac{-\nu(1-\alpha)}{\nu+\alpha}} z_t^{\frac{1+\nu}{\nu+\alpha}} \left(\frac{1-\alpha}{\vartheta}\right)^{\frac{1-\alpha}{\nu+\alpha}} + 1 - \delta \\ \left(c_t - \vartheta \frac{h_t^{1+\nu}}{1+\nu}\right)^{-\sigma} &= \beta \mathbb{E}_t \left[ \left(c_{t+1} - \vartheta \frac{h_{t+1}^{1+\nu}}{1+\nu}\right)^{-\sigma} r_{t+1} \right] \\ h_t &= \left(\frac{(1-\alpha)z_t}{\vartheta}\right)^{\frac{1}{\nu+\alpha}} k_t^{\frac{\alpha}{\nu+\alpha}} \\ \overline{a}_t &\equiv \left((1-\alpha)/\vartheta\right)^{\frac{1}{\nu}} \left(\alpha/\left(\overline{R} + \delta - 1\right)\right)^{\frac{\nu+\alpha}{\nu(1-\alpha)}} z_t^{\frac{1+\nu}{\nu(1-\alpha)}} \\ i_t &= a_{t+1} - (1-\delta) a_t \end{split}$$

 $\begin{array}{ll} \hline Normal \ times & Crisis \ times \\ \hline k_t = a_t & k_t = a_t - \mu\left(\gamma/R_t\right)a_t \\ \hline r_t = \int_{\overline{p}_t}^1 p \frac{d\mu(p)}{1 - \mu(\overline{p}_t)} & \frac{r_t}{R_t} = \frac{\gamma}{R_t}\mu\left(\gamma/R_t\right) + \int_{\gamma/R_t}^1 p \ d\mu\left(p\right) \\ \hline \overline{p}_t = \frac{\rho_t}{R_t} & \overline{p}_t = \gamma/R_t \\ R_t = \frac{\rho_t}{\mu^{-1}\left(\frac{\rho_t - \gamma}{\rho_t - (1 - \theta)\gamma}\right)} & \rho_t = \gamma \\ y_t = c_t + i_t + (R_t - r_t)a_t & y_t = c_t + i_t + (R_t - r_t)a_t - (R_t - \gamma)\left(a_t - k_t\right) \end{array}$ 

イロト 不得下 イヨト イヨト 二日

- Stylized facts
- Comparison with the literature
- RBC model with systemic banking crises
- Quantitative analysis and assessment
- Concluding remarks

- Gertler-Kiyotaki (2009), Gertler-Karadi (2010):
  - eq Full equilibrium non-linearities, such as sudden bank runs
- Bianchi (2009), Bianchi-Mendoza (2010):
  - $\neq$  Endogenous interest rates play a key role
- Brunnermeier-Sannikov (2012), He-Krishnamurthy (2012):
  - eq Typical crisis follows a rare, long sequence of positive TFP shocks
- Gertler-Kiyotaki (2012)
  - $\neq$  Bank run is market based and rationally expected

- Banks are atomistic, competitive, and price takers
- Heterogeneous 1-period banks



- Bank p's net return per unit of corporate loan is pR<sub>t</sub>
- Beneficial to relocate funds: unskilled banks lend to skillful banks on an interbank market. But relocation impaired due to:

- Banks are atomistic, competitive, and price takers
- Heterogeneous 1–period banks



- Bank p's net return per unit of corporate loan is pR<sub>t</sub>
- Beneficial to relocate funds: unskilled banks lend to skillful banks on an interbank market. But relocation impaired due to:
  - Asymmetric information: *p* is private information

- Banks are atomistic, competitive, and price takers
- Heterogeneous 1–period banks



- Bank p's net return per unit of corporate loan is pR<sub>t</sub>
- Beneficial to relocate funds: unskilled banks lend to skillful banks on an interbank market. But relocation impaired due to:
  - Asymmetric information: *p* is private information
  - Moral hazard: bank p may borrow  $\phi_t$  and run away

- Bank *p* has 4 options:
  - 1. Lend to other banks on the market  $\Longrightarrow \rho_t$
  - 2. Store goods  $\Longrightarrow \gamma$
  - 3. Raise funds  $\phi_t$  from market and lend to firm  $\implies pR_t (1 + \phi_t)$
  - 4. Raise funds  $\phi_t$  from market and walk away  $\implies \gamma \left(1 + \theta \phi_t\right)$
- Notice that the incentive to divert depends on corporate loan R<sub>t</sub>
  - The higher  $R_t$ , the lower the incentive to divert

• Borrowing bank *p* solves:

$$\begin{split} \max_{\phi_t} r_t \left( p \right) &\equiv p R_t \left( 1 + \phi_t \right) - \rho_t \phi_t \\ P C : \quad p R_t \left( 1 + \phi_t \right) - \rho_t \phi_t \geqslant \rho_t \qquad \Rightarrow p \geqslant \overline{p}_t \equiv \rho_t / R_t \\ I C : \quad \gamma \left( 1 + \theta \phi_t \right) \leqslant \rho_t \qquad \Rightarrow \phi_t = (\rho_t - \gamma) / \theta \gamma \end{split}$$

• Profits are fully distributed to household:  $r_t \equiv \int_0^1 r_t(p) \, d\mu(p)$ 

Interbank market clearing condition



Trade takes place when the corporate loan rate is high



Trade is impossible when the corporate loan rate is low



#### Corporate loan rate threshold



Return on equity and corporate loan supply

• Return on equity:

$$r_{t} = \begin{cases} R_{t} \int_{\overline{p}_{t}}^{1} p \frac{d\mu(p)}{1-\mu(\overline{p}_{t})} \text{, if an equilibrium with trade exists} \\ \\ R_{t} \left( \frac{\gamma}{R_{t}} \mu\left( \frac{\gamma}{R_{t}} \right) + \int_{\frac{\gamma}{R_{t}}}^{1} p \, d\mu\left(p\right) \right) \text{, otherwise.} \end{cases}$$

• Corporate loan supply

$$k_t^s = \left\{ egin{array}{c} a_t \ , \ ext{if an equilibrium with trade exists} \ & \ & \ & \ & \ & \left(1 - \mu\left(rac{\gamma}{R_t}
ight)
ight) a_t \ , \ ext{otherwise} \end{array} 
ight.$$

- Proposition 2 (Interbank loan market freeze): The interbank loan market is at work if and only if  $a_t \leq \overline{a}_t \equiv f_k^{-1}(\overline{R} + \delta 1; z_t)$ , and freezes otherwise.
- The interbank market improves efficiency but freezes when  $R_t < \overline{R}$
- In general equilibrium,  $R_t$  is driven by savings  $(a_t)$  and technology  $(z_t)$ . Hence the interbank market freezes when  $a_t > \overline{a}(z_t)$
- Threshold  $\overline{a}(\mathbf{z}_t)$  is the banking sector's "absorption capacity"
- A measure of financial imbalances is  $\overline{a}_t(z_t) a_t$

• Proposition 3 (Credit crunch): An interbank market freeze is accompanied with a sudden fall in the supply of corporate loans  $k_t^s$ (i.e. given  $z_t$ ,  $\lim_{a_t \searrow \overline{a}_t} k_t^s < \lim_{a_t \nearrow \overline{a}_t} k_t^s$ ), as well as by a sudden increase in the interest rate spread  $R_t/r_t$  (i.e. given  $z_t$ ,  $\lim_{a_t \searrow \overline{a}_t} R_t/r_t > \lim_{a_t \nearrow \overline{a}_t} R_t/r_t$ ).



Core and non-core liabilities

#### Bank balance sheets

| Normal times                                                                                 |                    |          |       |                | Crisis times   |                        |                       |                           |  |
|----------------------------------------------------------------------------------------------|--------------------|----------|-------|----------------|----------------|------------------------|-----------------------|---------------------------|--|
| А                                                                                            | L                  |          | А     | L              | А              | L                      | А                     | L                         |  |
| $(1+\phi_t)$ a $_t$                                                                          | a <sub>t</sub>     |          |       | a <sub>t</sub> | a <sub>t</sub> | at                     |                       | a <sub>t</sub>            |  |
|                                                                                              | $a_t \ \phi_t a_t$ | <i>~</i> | $a_t$ |                |                |                        | $a_t$                 |                           |  |
| $p \geqslant \overline{p}_t$ $p < \overline{p}_t$                                            |                    |          |       |                | <i>p</i> ≥     | $= \frac{\gamma}{R_t}$ | a <sub>t</sub><br>p < | $\leq \frac{\gamma}{R_t}$ |  |
| Size is $\mathbf{a}_{t}+\left(1-\mu\left(\overline{p}_{t} ight) ight)\phi_{t}\mathbf{a}_{t}$ |                    |          |       |                | Size is $a_t$  |                        |                       |                           |  |

∃ >

Two-way relationship between the retail and the wholesale loan markets

- Whether the interbank market is functioning depends on the corporate loan market equilibrium rate R<sup>\*</sup><sub>t</sub>
- $R_t^*$  depends on whether the interbank market is functioning
- The model must be solved taking these interactions into account:
  - **()** Conjecture the interbank market operates and solve for  $R_t^*$
  - 2 Verify whether indeed the interbank market operates  $(R_t^* \ge \overline{R})$
  - 3 In the negative, solve for  $R_t^*$  under a credit crunch

- The model is solved numerically by a collocation method
- Discretize the TFP level (Tauchen and Hussey, 1991)
- Decision rule for  $a_{t+1}$  is approximated by a function of Chebychev polynomials
- The optimal decision rule is obtained as the fixed point solution to the Euler equation

# Quantitative Analysis

The role of financial imbalances



#### Sensitivity of the frequency of SBCs to initial conditions

This figure reports the evolution of the frequency of SBCs during the transition toward the average steady state.

# Quantitative Analysis

The role of financial imbalances



#### Sensitivity of output dynamics to initial conditions

A B F A B F

# Quantitative Analysis

The role of financial imbalances



#### Sensitivity of credit dynamics to initial conditions

#### Changes in standard parameters

|                                | Benchmark | $\frac{\sigma}{10}$ | $\theta$<br>0.20 | $\lambda$<br>35 | $\sigma_z$<br>0.02 | $ ho_z$ 0.95 |
|--------------------------------|-----------|---------------------|------------------|-----------------|--------------------|--------------|
| interbank rate $(\rho)$        | 0.86      | 0.23                | 0.40             | 1.34            | 0.89               | 0.72         |
| Corporate rate $(R)$           | 4.35      | 3.70                | 5.50             | 3.70            | 4.32               | 4.29         |
| Return on deposit/equity $(r)$ | 2.64      | 1.61                | 2.61             | 2.67            | 2.55               | 2.59         |
| Spread $(R-r)$                 | 1.71      | 2.09                | 2.89             | 1.03            | 1.77               | 1.70         |
| $\overline{R}$                 | 2.43      | 2.43                | 4.83             | 0.41            | 2.43               | 2.43         |
| Probability of a crisis        | 2.69      | 5.43                | 7.34             | 0.16            | 3.35               | 1.90         |
| Average duration               | 2.62      | 4.08                | 5.06             | 1.87            | 2.82               | 2.92         |
| Average amplitude              | 17.87     | 19.00               | 16.90            | 15.80           | 19.36              | 16.08        |

• • = • • = •

- Absent frictions between banks and household, bank leverage is undetermined and bank default is not defined
- Two more assumptions to pin down leverage:
  - Bank deposits are safe assets (non state contingent return)
  - Bank managers are risk neutral (unlike household)
- One more assumption to introduce defaults:
  - Household (bank shareholder) has partial liability

#### Leverage and bank default dynamics along typical path



Figure 19: Typical Path: Leverage and Default