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1 Introduction

The aim of this monograph is to set out a uni�ed and comprehensive theory
for a class of nonlinear time series models that can deal with distributions
that change over time. The emphasis is models in which the conditional
distribution of an observation may be heavy-tailed and the location and/or
scale changes over time. The de�ning feature of these models is that the
dynamics are driven by the score of the conditional distribution. When a
suitable link function is employed for the dynamic parameter, analytic ex-
pressions may be derived for (unconditional) moments, autocorrelations and
moments of multi-step forecasts. Furthermore a full asymptotic distribu-
tional theory for maximum likelihood estimators can be obtained, including
analytic expressions for the asymptotic covariance matrix of the estimators.
The class of what we call dynamic conditional score (DCS) models in-

cludes standard linear time series models observed with an error which may
be subject to outliers, models which capture changing conditional variance
and models for non-negative variables. The last two of these are of consider-
able importance in �nancial econometrics where they are used for forecasting
volatility. A guiding principle underlying the proposed class of models is that
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of signal extraction. When combined with basic ideas of maximum likelihood
estimation, the signal extraction approach leads to models which, in contrast
to many in the literature, are relatively simple in their form and yield analytic
expressions for their principal features.
For estimating location, DCS models are closely related to the unob-

served components models described in Harvey (1989). Such models can be
handled using state space methods and they are easily accessible using the
STAMP package of Koopman et al (2008). For estimating scale, the mod-
els are close to stochastic volatility models, where the variance is treated as
an unobserved component. The close ties with unobserved component and
stochastic volatility models provides insight into the structure of the DCS
models, particularly with respect to modeling trend and seasonality, and
into possible restrictions on the parameters.

2 Unobserved components and �lters

Autoregressive and autoregressive integrated moving average (ARIMA) mod-
els focus on forecasting future values of a series. A more general framework
is given by the signal plus noise paradigm. Signal extraction is of interest in
itself and once the problem has been solved, the forecasting solution follows.
A simple Gaussian signal plus noise model is

yt = �t + "t; "t � NID
�
0; �2"

�
; t = 1; :::; T (1)

�t+1 = ��t + �t; �t � NID(0; �2�);

where the irregular and signal disturbances, "t and �t respectively, are mu-
tually independent and the notation NID (0; �2) denotes normally and in-
dependently distributed with mean zero and variance �2. The autoregressive
parameter is �; while the signal-noise ratio, q = �2�=�

2
"; plays the key role in

determining how observations should be weighted for prediction and signal
extraction. The reduced form (RF) of (1) is an ARMA(1,1) process

yt = �yt�1 + �t � ��t�1; �t � NID
�
0; �2

�
; t = 1; :::; T (2)

but with restrictions on �: For example, when � = 1; 0 � � � 1: The forecasts
from the unobserved components (UC) model and reduced form are the same.
The UC model in (1) is e¤ectively in state space form (SSF) and, as such,

it may be handled by the Kalman �lter (KF); see Harvey (1989). The para-
meters � and q can be estimated by maximum likelihood, with the likelihood
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function constructed from the one-step ahead prediction errors. The KF can
be expressed as a single equation which combines the estimator of �t based
on information at time t� 1 with the t� th observation in order to produce
the best estimator of �t+1. Writing this equation together with an equation
that de�nes the one-step ahead prediction error, vt; gives the innovations
form (IF) of the KF:

yt = �tjt�1 + vt; t = 1; :::; T; (3)

�t+1jt = ��tjt�1 + ktvt:

The Kalman gain, kt; depends on � and q. In the steady-state, kt is constant.
Setting it equal to � in (3) and re-arranging gives the ARMA model,(2), with
�t = vt and ��� = �: A pure autoregressive model is a special case in which
� = �, so that �tjt�1 = �yt�1:
Now suppose that the noise in a UC model comes from a heavy tailed

distribution, such as Student�s t. Such a distribution can give rise to obser-
vations which, when judged against the yardstick of a Gaussian distribution,
are considered to be outliers. Figure 2 illustrates a situation of this kind.
In the case of (1), the reduced form is still an ARMA(1,1) process, but the
�0ts in (2) are not independent and identically distributed (IID) and quasi-
maximum likelihood (QML) estimation- that is estimation carried out under
the assumption of normality - is ine¢ cient. Approximating by a pure AR
is even more problematic. (If, as may happen with a heavy-tailed distribu-
tion, the variance of "t does not exist, the QML estimator may not even be
consistent.)
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Allowing the �0ts to have a heavy-tailed distribution does not deal with
the problem as a large observation becomes incorporated into the level and
takes time to work through the system. To be speci�c, the AR representation
of (2) is

yt = (�� �)
1X
j=1

�j�1yt�j + �t = �tjt�1 + �t:

If the t� th observation is contaminated by adding an arbitrary amount, C;
then after � periods, the prediction of the next observation is still contami-
nated by C since it contains the component (�� �)��C.
An ARMA or AR model in which the disturbances are allowed to have

a heavy-tailed distribution is designed to handle innovations outliers, as op-
posed to additive outliers. There is a good deal of discussion of outliers, and
how to handle them, in the robustness literature; see, for example the book
by Maronna, Martin and Yohai (2006, ch 8) and the recent paper by Muler,
Pena and Yohai (2009) on robust estimation for ARMA models. The argu-
ment in this monograph is that a model-based approach is not only simpler,
both conceptually and computationally, than the usual robust methods, but
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is also more amenable to diagnostic checking and generalization.
Simulation methods, such as Markov chain Monte Carlo (MCMC) and

particle �ltering, provide the basis for a direct attack on models that are
nonlinear and/or non-Gaussian. The aim is to extend the Kalman �ltering
and smoothing algorithms that have proved so e¤ective in handling linear
Gaussian models. Considerable progress has been made in recent years; see
Durbin and Koopman (2012). However, the fact remains that simulation-
based estimation can be time-consuming and subject to a degree of uncer-
tainty. In addition the statistical properties of the estimators are not easy to
establish.
The approach here begins by writing down the distribution of the t� th

observation, conditional on past observations. Time-varying parameters are
then updated by a suitably de�ned �lter. Such a model is what Cox (1981)
called observation driven. In a linear Gaussian UC model, which is called pa-
rameter driven in Cox�s terminology, the KF is driven by the one step-ahead
prediction error, as in (3). The main ingredient in the �lter developed here
for non-Gaussian distributions is the replacement of vt in the KF equation
by a variable, ut; that is proportional to the score of the conditional dis-
tribution, that is the logarithm of the probability density function at time t
di¤erentiated with respect to �tjt�1. Thus the second equation in (3) becomes

�t+1jt = ��tjt�1 + �ut

where � is treated as an unknown parameter.
Why the score ? If the signal in (1) were �xed, that is � = 1 and �2� = 0;

�t+1 = �; the sample mean, b�; would satisfy the condition
TX
t=1

(yt � b�) = 0:
The maximum likelihood (ML) estimator is obtained by di¤erentiating the
log-likelihood function with respect to � and setting the resulting derivative,
the score, equal to zero. When the observations are normally distributed,
the ML estimator is the same as the sample mean, the moment estimator.
However, for a non-Gaussian distribution, the moment estimator and the
ML estimator di¤er. Once the signal in a Gaussian model becomes dynamic,
as in (1), its estimate can be updated with each new observation using the
Kalman �lter. With a non-normal distribution exact updating is no longer
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possible, but the fact that ML estimation in the static case sets the score to
zero provides the rationale for replacing the prediction error, which has mean
zero, by the score, which for each individual observation, also has mean zero.
The resulting �lter might therefore be regarded as an approximation to the
computer intensive solution for the UC model and the evidence presented
later lends support to this notion.
The attraction of treating the �lter driven by the score of the conditional

distribution as a model in its own right is that it becomes possible to derive
the asymptotic distribution of the ML estimator and to generalize in various
directions. Thus the same approach can then be used to model scale, using an
exponential link function, and to model location and scale for non-negative
variables. The �rst equation in (3) is then nonlinear. The justi�cation for
the class of dynamic conditional score models is not that they approximate
corresponding UC models, but rather that their statistical properties are
both comprehensive and straightforward.
The use of the score of the conditional distribution to robustify the KF

was originally proposed by Masreliez (1975). However, it has often been
argued that a crucial assumption made by Masreliez (concerning the approx-
imate normality of the prior at each time step) is, to quote Schick and Mitter
(1994, p 1054), �..insu¢ ciently justi�ed and remains controversial.�Neverthe-
less, the procedure has been found to perform well both in simulation studies
and with real data.�Schick and Mitter (1994) suggest a generalization of the
Masreliez �lter based on somewhat stronger theoretical foundations. The
observation noise is assumed to come from a contaminated normal distribu-
tion and the resulting estimator employs banks of Kalman �lters and optimal
smoothers weighted by posterior probabilities. As a result it is considerably
more complicated than the Masreliez �lter. Once the realm of computation-
ally intensive techniques has been entered it seems better to follow adopt the
simulation based methods alluded to earlier.
The situations tackled by Masreliez are more complicated than those

considered here because the system matrices in the state space model may
be time-varying. The models in this monograph are simpler in structure and
as a result the use of the score to drive the dynamics can be put on much
�rmer statistical foundations.
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3 Independence, white noise and martingale
di¤erences

The study of models that are not linear and Gaussian requires a careful dis-
tinction to be made between the concepts of independence, uncorrelatedness
and martingale di¤erences. The de�nitions are as follows.
(a) White noise (WN) variables are serially uncorrelated with constant

mean and variance.
(b) A martingale di¤erence has a zero (or constant) conditional expecta-

tion, that is

E
t�1
(yt) = E (yt j Yt�1) = 0:

It is also necessary for the unconditional expectation of the absolute value to
be �nite, that is E jytj <1; see Davidson (2000, p 121-2).
(c) Strict white noise variables are independent and identically distrib-

uted (IID).
The relationship between the two types of white noise and martingale

di¤erences is as follows;
i) All zero mean independent sequences are MDs but not the converse.
ii) All MDs are WN, provided that the variance is �nite. The converse is

not true.
Finally note that when a variable is normally distributed, the distinction

between WN, strict WN and MDs disappears, the reason being that a normal
distribution is fully described by its �rst two moments. Thus Gaussian white
noise is strict white noise.
A crucial element in the understanding of the above concepts, and in the

statistical derivations that follow, is the Law of Iterated Expectations (LIE)
which states that, if g (yt) is a function of yt; then an expected value several
steps ahead can be found from the sequence of one-step ahead expectations.
Thus

E
t�J
[g (yt)] = E

t�J
� � � E

t�1
[g (yt)] ; J = 2; 3; :::

The unconditional expectation is found by letting J ! 1: For predicting a
function of the observation at time T + ` at T , set t = T + ` and J = ` so

E
T
[g (yT+`)] = E

T
� � � E

T+`�1
[g(yT+`)]
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The proof can be found in many introductory time series and econometrics
texts.
The LIE enables us to show that all MD�s have zero unconditional mean

and are serially uncorrelated. Speci�cally

E (yt) = E [E (yt j Yt�1)] = 0

and yt is uncorrelated with any function of past observations because

E [ytf (Yt�1) j Yt�1] = f (Yt�1)E (yt j Yt�1) = 0:

Hence the unconditional expectation of ytf (Yt�1) is zero.
A WN sequence is not necessarily a MD because there may be a non-

trivial nonlinear predictor. For example, the model

yt = "t + �"t�1"t�2; "t � IID(0; �2)

where "0 and "�1 are �xed and known, is white noise, but not a MD as
E (yT+1 j YT ) = �"T "T�1:
A linear process is usually de�ned as one which can be written as an

in�nite moving average in IID disturbances, with zero mean and constant
variance, �2; with the sum of the squares of the coe¢ cients being �nite, that
is

yt =
1X
j=0

 j"t�j;
1X
j=0

 2j <1; "t � IID(0; �2) (4)

More generally a linear process may be de�ned as a linear combination of
past observations and/or strict white noise disturbances, with appropriately
de�ned initial conditions. (Though even this is not straightforward - see see
Terasvirta et al (2010, p 1-2). For a stationary process, the representation in
(4) means that all the information about the dynamics is in the autocorrela-
tion function (ACF). Furthermore the minimum mean square error (MMSE)
predictor of yT+` is linear and its MSE is �2

P`�1
j=0  

2
j : However, unless the

disturbances are Gaussian, a linear model is of limited value since it is not
usually possible to derive the unconditional distribution or the multi-step
predictive distribution. On the other hand the optimal forecasts in a model
which is a linear function of current and past MDs is the same as if the MDs
were strict WN and, if the conditional variances are constant, the MSE is
the same.
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4 Volatility

If markets are working e¢ ciently, �nancial returns are MDs. In other words
they should not be predictable on the basis of past information. However,
returns are not usually independent and so features of the conditional dis-
tribution apart from the mean may be predictable. In particular non-trivial
predictions can be made for the variance or, more generally, the scale.

4.1 Stochastic Volatility

The variance in Stochastic Volatility (SV) models is driven by an unobserved
process. The �rst-order model for yt; t = 1; ::; T; is

yt = �t + �t"t; �2t = exp (2�t) ; "t � IID (0; 1) (5)

�t+1 = � + ��t + �t; �t � NID
�
0; �2�

�
with "t and �t mutually independent. Leverage e¤ects, which enable �

2
t to re-

spond asymmetrically to positive and negative values of yt, can be introduced
by allowing these disturbances to be correlated, as in Harvey and Shephard
(1996). Shephard and Andersen (2009) discuss the relationship between SV
models and continous time models in the �nance literature.
The exponential link function ensures that the variance remains positive

and the restrictions needed for �t and yt to be stationary are straightforward,
that is j�j < 1. Furthermore, analytic expressions for moments and ACFs of
the absolute values of the observations raised to any power can be derived.
Instead of using an exponential link function, we could have

�2t+1 = � + ��2t + �t; �t � NID
�
0; �2�

�
but with �t taken to be the positive square root of �2t : However, this model,
which corresponds to the square root process in continuous time, is less sat-
isfactory.
Unfortunately, direct maximum likelihood (ML) estimation of the SV

model is not possible. A quasi-maximum likelihood (QML) procedure can
be based on the linear state space form obtained by taking logarithms of
the absolute values of the observations, corrected for the mean, to give the
following measurement equation:

ln jytj = �t + ln j"tj ; t = 1; ::; T: (6)
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The parameters in the model are then estimated by using the Kalman �lter,
as in Harvey, Ruiz and Shephard (1994). However, there is a loss in e¢ ciency
because the distribution of ln j"tj is far from Gaussian. E¢ cient estimation
can be achived by computer intensive methods, as described in Durbin and
Koopman (2001) and elsewhere.

4.2 Generalized Autoregressive Conditional Heteroscedas-
ticity (GARCH)

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
model, introduced, as ARCH, by Engle (1982) and generalized by Boller-
slev (1986) and Taylor (1986), is the classic way of modeling changes in the
volatility of returns. It does so by letting the variance be a linear function of
past squared observations. In the �rst-order case, the GARCH (1; 1) model,
with the mean of the observations, yt; t = 1; ::; T; assumed to be zero, is

yt = �tjt�1 + �tjt�1"t; "t � NID(0; 1) (7)

and
�2tjt�1 = � + ��2t�1jt�2 + �y2t�1; � > 0; � � 0; � � 0: (8)

The conditions on � and � ensure that the variance remains positive. The
sum of � and � is typically close to one and the Integrated GARCH (IGARCH)
model is obtained when the sum is equal to one. The variance in IGARCH
is an exponentially weighted moving average (EWMA) of past squared ob-
servations and, as such, is often used by practitioners.
The principal advantage of GARCH models over SV models is that, be-

cause they are observation driven, the likelihood function is immediately
available. As noted in the previous sub-section, this is not the case with the
parameter driven SV model.
The model may be extended by adding lags of the variance and the

squared observations. Heavy tails are accomodated by letting the condi-
tional distribution be t-distributed, as proposed by Bollerslev (1987). The
GARCH(1; 1)� t model has become something of an industry standard.
Leverage e¤ects, which enable �2tjt�1 to respond asymmetrically to positive

and negative values of yt, are typically incorporated into GARCH models by
including a variable in which the squared observations are multiplied by an
indicator that takes a value of unity when an observation is negative and is
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zero otherwise; see Taylor (2005, p 220-1). The techique is often known as
GJR, after the originators, Glosten, Jagannanthan and Runckle (1993).
The autocorrelation function (ACF) of squared observations may be ob-

tained relatively easily as they obey an ARMA process. For example, for
GARCH(1,1) with zero mean

y2t = 
 + �y2t�1 + vt + ��vt�1 (9)

where vt is white noise and � = � + � and �� = ��: The drawback to
working with squared observations is that outlying observations seriously
weaken the serial correlation and it is a well-established stylized fact that
the autocorrelations of absolute values tend to be larger and hence provide
a better vehicle for detecting dynamic volatility and assessing its nature; see
Taylor (2005).

4.3 Exponential GARCH

Nelson (1991) introduced the exponential GARCH (EGARCH) model in
which the dynamic equation for volatility is formulated in terms of the loga-
rithm of the conditional variance in (7). The leading case is

ln�2tjt�1 = � + � ln�2t�1jt�2 + � [j"t�1j � E j"t�1j] + ��"t�1; (10)

where � and �� are parameters and, for a Gaussian model, E j"tj =
p
2=�.

The role of "t is to capture leverage e¤ects. As in the SV model, the expo-
nential link function ensures that the variance is always positive. Indeed the
model has a structure similar to SV since � [j"t�1j � E j"t�1j] + ��"t�1 is a
MD. Stationarity restrictions are similar to those in the SV model; for exam-
ple, in the equation above j�j < 1. The exponential link permits models that
would be problematic with GARCH because of the need to ensure a positive
variance. In particular cycles and seasonal e¤ects are possible.
Nelson (1991) notes that if the conditional distribution of the observations

is Student�s t, with �nite degrees of freedom, the conditions needed for the
existence of the moments of �2tjt�1 and yt are rarely satis�ed in practice.
Hence the model is of little practical value since, without a �rst moment,
even the sample mean is inconsistent. The lack of moments for Student�s
t and the fact that there is no asymptotic theory for ML has limited the
application of EGARCH.
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4.4 Variance, scale and outliers

Substituting in (8) gives an in�nite autoregression in squared observations.
In an ARCH(p) model, forecasts are made directly from a �nite number of
past squared observations - hence the name ARCH. From our perspective,
the reason that GARCH is more plausible than ARCH(p) is that estimat-
ing variance is an exercise in signal extraction and as such the conditional
variance cannot normally be a �nite autoregression. The ARCH(1) model is
particularly problematic as it is based on a single squared observation which
is bound to be a poor estimator of variance.
A linear combination of past squares (even if in�nite) may not be a

good choice for modeling dynamics when the conditional distribution is non-
Gaussian observations. This stems from the fact that the sample variance
in a static model can be very ine¢ cient. Indeed, for some heavy-tailed dis-
tributions, the variance may not exist. This di¢ culty may be avoided by
modeling scale instead. Since scale is necessarily positive (as is variance), an
exponential link function is appropriate. Furthermore a model for the log-
arithm of volatility may be regarded as an approximation to an SV model.
This reasoning lead to Nelson proposing EGARCH. The only �aw was to use
absolute values in the dynamic equation. Replacing the absolute value by
the score resolves the di¢ culties.
Outliers present a practical problem for GARCH models, even if the con-

ditional distribution is allowed to have heavy-tails, as in GARCH-t. The
reason is that a large value becomes embedded in the conditional variance
and typically takes a long time to work through. This is the same di¢ culty
that was �noted earlier in connection with additive outliers.

4.5 Location/scale models

Many variables are intrinsically non-negative. Examples in �nance include
duration, realized volatility and spreads; see, for example, Russell and Engle
(2010) and Brownlees and Gallo (2010). Other situations in economics where
distributions for non-negative variables are appropriate are in the study of
incomes and the size of �rms; the book by Kleiber and Kotz (2003) describes
many case studies.
Engle (2002) introduced a class of multiplicative error models (MEMs)

for time series modeling of non-negative variables. In these models, the
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conditional mean, �tpt�1, is driven by a GARCH-type equation and so

yt = "t�tpt�1; 0 � yt <1; t = 1; ::::; T;

where "t has a distribution with mean one and, analogous to GARCH(1,1),

�tpt�1 = � + ��t�1pt�2 + �yt�1; � > 0; � � 0; � � 0: (11)

The gamma distribution is often used for "t, with the exponential distribution
being an important special case. The gamma distribution does not have a
particularly heavy tail. However, other distributions, such as the Weibull and
Burr, can have a heavy tail and observations that are outliers for a gamma
distribution can become embedded in the predictions. Thus the linearity of
(11) must be questioned, just as the use of a linear combination of squares
was questioned for GARCH.
An exponential link function is sometimes used so as to ensure that �tpt�1

remains positive; see, for example, Brandt and Jones (2006). However, an
exponential link does not, in itself, deal with the problem noted at the end
of the previous paragraph.

5 Dynamic conditional score models

An observation driven model is set up in terms of a conditional distribution
for the t� th observation. Thus

p(ytj�tjt�1; Yt�1); t = 1; ::::; T (12)

�t+1jt = g(�tjt�1; �t�1jt�2; :::; Yt)

where Yt denotes observations up to, and including yt; and �tjt�1 is a parame-
ter that changes over time. The second equation in (12) may be regarded as
a data generating process or as a way of writing a �lter that approximates a
nonlinear UC model. In both cases the notation �t+1jt stresses its status as a
parameter of the conditional distribution and as a �lter, that is a function of
past observations. The likelihood function for an observation driven model
is immediately available since the joint density of a set of T observations is

L( ) =
TY
t=1

p(ytj�tjt�1; Yt�1; );
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where  denotes a vector of unknown parameters.
The �rst-order Gaussian GARCH model, (7) and (8), is an observation

driven model in which �tjt�1 = �2tjt�1: (Andersen et al (2006) use the same
notation for the conditional variance.) As such it may be written

yt j Yt�1 � NID
�
0; �2tjt�1

�
�2t+1jt = � + ��2tjt�1 + �vt; � > 0; � � �; � � 0; (13)

where � = � + � and vt = y2t � �2tjt�1 is a martingale di¤erence. Writing
the dynamic equation with �2t+1jt; as opposed to �

2
tjt�1; on the left hand side

stresses the link with signal extraction.
Once the assumption of Gaussianity is dropped, the case for weighting

the squared observations is much weaker. In a DCS model, �2t+1jt depends on
current and past values of a variable, ut; that is de�ned as being proportional
to the (standardized) score of the conditional distribution at time t. This
variable is a MD by construction. When yt has a conditional t-distribution
with � degrees of freedom, the DCS modi�cation replaces vt in the conditional
variance equation, (13), by another MD, vt = �2tjt�1ut; where

ut =
(� + 1)y2t

(� � 2)�2tjt�1 + y2t
� 1; �1 � ut � �; � > 2: (14)

This model is called Beta-t-GARCH because ut is a linear function of a
variable with a beta distribution. Note that ut is the score standardized by
dividing by the information quantity, I(�2tjt�1) = ��4tjt�1; and then multiplying
by two. When � =1; ut = y2t =�

2
tjt�1 � 1 and the standard GARCH model,

(13), is obtained by setting vt = �2tjt�1ut:

Figure 1 plots the conditional score function, u; against y=� for t�distributions
with � = 3 and 10 and for the normal distribution (� =1). When � = 3 an
extreme observation has only a moderate impact as it is treated as coming
from a t�� distribution rather than from a normal distribution with an ab-
normally high variance. As jytj ! 1; ut ! � so ut is bounded for �nite �,
as is the robust conditional variance equation proposed by Muler and Yohai
(2008, p 2922).
The DCS volatility models have particularly attractive properties when an

exponential link function is used. In the Gaussian case, this implies that the
dynamic equation applies to ln�2t+1jt; as in EGARCH. For the t-distribution
it is better to work with the scale, which, for � > 2; is related to the standard
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Figure 1: Impact of u for t� with � = 3 (thick), � = 10 (thin) and � = 1
(dashed).

deviation by the formula, 't+1jt = (� � 2)1=2�t+1jt: The dynamic equation is
then set up for the logarithm of scale, �t+1jt = ln't+1jt; and so the �rst-order
model is

�t+1jt = � + ��tjt�1 + �ut; t = 1; ::::; T (15)

where

ut =
(� + 1)y2t

� exp(2�tjt�1) + y2t
� 1; �1 � ut � �; � > 0;

is just the conditional score; compare (14). The class of models obtained by
combining the conditional score with an exponential link function is called
Beta-t-EGARCH: A complementary class is based on the general error dis-
tribution (GED) distribution. The conditional score then has a gamma dis-
tribution, leading to the name Gamma-GED-EGARCH.

Example 1 An announcement made by the electronics �rm Apple illustrates
very clearly advantage of Beta-t-EGARCH over the standard GARCH(1,1)
model. On Thursday 28 September 2000 a pro�t warning was issued, which
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led the value of the stock to plunge from an end-of-trading value of $26.75 to
$12.88 on the subsequent day. This change corresponds to a drop of about
73% in term of the log-di¤erence. In terms of volatility this fall was a one-
o¤ event, since it apparently had no e¤ect on the variability of the price
changes on the following days. Figure ??, contains a snapshot of the event
and the surrounding period. The �gure plots absolute returns, the �tted condi-
tional standard deviations of a GARCH(1,1)-t speci�cation with leverage, and
the �tted conditional standard deviations of the comparable Beta-t-EGARCH
model; a full set of estimation results are given later in table ??) and in
Harvey and Sucarrat (2012). As is clear from the �gure, the GARCH fore-
casts of one-step standard deviations exceed absolute returns for almost two
months after the event, a clear-cut example of forecast failure. By contrast,
the Beta-t-EGARCH forecasts remain in the same range of variation as the
absolute returns.

Similar considerations arise when dealing with location/scale models.
Again ut is chosen so as to be proportional to the conditional score. Fig-
ure 3 shows a plot of ut against y=� for a Weibull distribution, with a shape
parameter of 0.5, and contrasts it with the response for a gamma distribu-
tion, which is linear. While the DCS approach for a gamma distribution is
consistent with the conditional mean dynamic equation of (11), it suggests a
dampening down of the impact of a large observation from a Weibull.

Remark 2 There is a considerable literature on QML estimation of GARCH
models. In this context, QML estimates the parameters under the assump-
tion of Gaussianity. Similarly QML can be used to estimate the parameters
in an ARMA model. QML is then essentially just least squares. For a lo-
cation/scale model, QML is based on the exponential distribution. The es-
timators can be shown to be consistent for certain distributions other than
the assumed distribution and asymptotically correct standard errors may be
computed. Unfortunately standard QML asymptotic theory breaks down for
GARCH models with heavy-tailed distributions (speci�cally those without fourth
moments) and modi�ed bootstrap procedures have to be used, as in Hall and
Yao (2003). However, even though QML can be adapted to give consistent
estimators, even when the correct distribution is not speci�ed, it is of little
use if the dynamic equation is incorrect.

In this monograph attention is directed towards score-driven models for
which an asymptotic distribution for the ML estimator can be derived. The
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Figure 2: Absolute values of de-meaned Apple returns with �ltered GARCH
and Beta-t-EGARCH
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Figure 3: Impact of u for a Weibull distribution and a Gamma (dashed).

reason the asymptotics work is that the score and its �rst derivative are dis-
tributed independently of the time-varying parameter(s) and have �nite �rst
and second moments. The main theorem is set out in chapter 2 and then
applied in the next three chapters which deal respectively with location mod-
els ( that is for the mean or median), scale models ( primarily EGARCH),
models and location/scale models. Other properties of the proposed models
may also be found. In particular there are analytic expressions for : 1) for
moments, 2) autocorrelation functions and 3) multi-step forecasts and their
mean square errors. The properties, particularly for the volatility models,
which employ an exponential link function, are more general than is usually
the case. For example, expressions for unconditional moments, autocorrela-
tions and the conditional moments of multi-step predictive distributions can
be found for absolute values of the observations raised to any power.
Given �T+1pT ; the distribution of �T+`pT+`�1; and in the case of volatil-

ity models, its exponent, depends only on future disturbances, as does the
conditional distribution of yT+`: Although these multi-step conditional dis-
tributions are di¢ cult to �nd analytically, it is straightforward to simulate
them.
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For modeling volatility, the popularity of GARCH(1,1) suggests that the
�rst-order model, (15), is likely to be the most widely used in practice. More
generally, a linear dynamic model of order (p; r) may be de�ned as

�t+1jt = � + �1�tpt�1 + :::+ �p�t�p+1pt�p + �0ut + �1ut�1 + :::+ �rut�r; (16)

where p � 0 and r � 0 are �nite integers and �; �1; ::; �p; �0; ::; �r are (�xed)
parameters. Stationarity (both strict and covariance) of �tpt�1 requires that
the roots of the associated autoregressive polynomial equation1 are less than
one in absolute value, as in an autoregressive-moving average model. How-
ever, any conditions which need to be imposed on what, at �rst sight, look
like moving average coe¢ cients are not immediately apparent from an anal-
ogy with ARMA theory. Since (16) is a �lter, rather than a conventional
ARMA model, it will be referred to as a quasi-ARMA model and denoted
QARMA(p; r):
The terminology for the order of (16) follows that of Nelson (1991). Thus

the �rst-order model, (15), is (1,0). This nomenclature is not consistent with
GARCH, where the �rst-order model is labeled (1,1), but it is in keeping with
the signal extraction interpretation because the �lter re�ects an underlying
AR(1) dynamic process for volatility. ARCH(1) sets � = � which is a very
special restriction when viewed in terms of (13). In the location case, the
level in (1) is clearly an AR(1), while it is the reduced form, the ARMA
model for yt; that is of order (1,1). The series itself only becomes an AR(1)
process when no noise is added. While such a model is �ne for location, it is
not really suitable for variance because variance cannot be observed directly.
Further discussion on these matters can be found in Appendix E.
While equation (16) generalizes DCS models in the ARMA direction,

another possibility is develop DCS models that mirror the unobserved com-
ponent, or structural time series models, that are implemented in the STAMP
package of Koopman et al (2008). Such models typically include trend, sea-
sonal and cyclical components for capturing movements in location. The
DCS approach leads to a �lter that is suitable for a heavy-tailed irregular
component. Furthermore, the use of an exponential link function allows the
inclusion of trend, seasonal and cyclical components in dynamic volatility
models, without the attendant di�culties experienced with GARCH because
of the need to ensure a positive variance.

1The associated autoregressive polynomial equation is xp � �1xp�1 � :::� �p = 0: The
roots may be complex conjugates. Hence the reference to absolute value ( or modulus).
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6 Distributions and quantiles

Once the Gaussian assumption is dropped, the question arises as to why the
focus should be on mean and variance. Admittedly, the mean is rather basic,
but the attraction of the variance is limited since attention is typically on
certain quantiles or indeed the whole distribution.
One of the reasons for the interest in quantiles is that they de�ne, or help

to de�ne, certain measures of risk. In particular, value at risk (VaR) for a
return, y, is

Pr(y � V aR� (y)) = � ;

so V aR� (y) is just the ��th quantile; see, for example, Tsay (2010). Expected
shortfall (ES), de�ned as

ES� (y) = E[y j y > V aR� (y));

is often preferred to VaR since it aggregates risks in a coherent manner.
For tabulated distributions, such as the normal and t, the quantiles can be

read o¤directly and so VaR for the one-step ahead conditional distribution is
readily available. As noted earlier, multi-step distributions for DCS models
are easily simulated and hence VaR and ES can be calculated to a required
degree of precision. In a similar way, expected loss can be computed by
simulation for any loss function and the results employed in decision making;
see Harvey (1989, pp222-26).
Sometimes analytic expressions are available for quantiles. The quantile

function for a given distribution function, F (y); is F�1(�); 0 � � � 1:
What happens if we are not prepared to assume a distribution? The at-

traction of QML estimation for GARCH is that it is consistent, even if the
distribution is not normal. As a result many researchers are more comfort-
able with QML than with an approach that assumes a speci�c distribution.
However, setting aside the point that QML values consistency more than
e¢ ciency and a desire to explore di¤erent model speci�cations, the implied
focus on variance is of limited value if what is required is knowledge of the
quantiles. In any case, as was pointed out in Remark 2, the argument that
QML is robust to misspeci�cation misses the point because it assumes that
the speci�cation of the conditional variance as a linear combination of squares
is correct.
A better approach to relaxing the dependence on distributional assump-

tions is to develop nonparametric methods for time series data. Rather than
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weighting squared observations, as in GARCH, weighting patterns implied
by dynamics models can be applied to the kernels that are typically used for
density estimation. Thus the whole distribution is tracked as it changes over
time and, at the same time, features of the distribution, such as quantiles,
can be extracted. Proceeding in this way raises various issues. For example,
is it better to model the quantiles directly and how well is tail-behaviour
captured?

7 Plan of book

The plan of the book is as follows. Chapter 2 provides some basic theory,
beginning with a review of the Student-t and general error distributions.
The principles of maximum likelihood estimation are discussed. The asymp-
totic theory for the properties of the maximum likelihood estimators of the
parameters in the DCS class is then developed.
Chapters 3,4 and 5 develop the theory for location, scale and location/scale

models. Attention is initially focussed on stationary time series, after which
it is shown how trend and seasonal components may be handled by draw-
ing on parallels with the unobserved component, or structural, time series
models that have been sucessfully applied to modeling the level of Gaussian
time series. The technical manipulations rest mainly on standard properties
of the beta and gamma distributions. Once this is appreciated, most of the
results and formulae follow in a straightforward and elegant fashion. Indeed
the fact that the mathematics is so transparent is a strong indication that
the statistical structure of the class of models is a sound one. However the
appeal of the mathematics should not detract from the main purpose of the
models which is to deal with heavy-tailed distributions in a manner that is
e¢ cient, both statistically and from the practical perspective.
Chapter 6 indicates how the ideas of the earlier chapters might be ex-

tended to nonparametric estimation of changing distributions, while chapter
7 provides an introduction to the challenges associated with modeling multi-
variate time series. The emphasis on correlation, like the focus on variance,
stems from an implicit assumption of Gaussianity. Questioning this assump-
tion for multivariate time series leads to an exploration of the opportunities
a¤orded by copulas.
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