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Summary

In recent years, a number of papers have applied econometric models that allow for
changes in model parameters. In general, this literature has examined and investigated
how the properties of key macroeconomic variables have changed over the last three
decades. So the underlying econometric models in these studies have therefore been

used in a descriptive role.

The aim of this paper, instead, is to consider if these sophisticated models can offer
gains in a forecasting context - specifically, GDP growth, CPI inflation and the
short-term interest rate relative to simpler econometric models that assume fixed
parameters. We consider 24 forecasting models that differ along two dimensions. First,
they model the time-variation in parameters in different ways and allow for either
gradual or abrupt shifts. Second, some of the models incorporate more economic
information than others and include a larger number of explanatory variables in an

efficient manner while still allowing for time-varying parameters.

We estimate these models at every quarter from 1976 Q1 to 2007 Q4. At each point in
time we use the estimates of each model to forecast GDP, CPI inflation and the
short-term interest rate. We then construct the average squared deviation of these

forecasts from the observed value relative to forecasts from a simple benchmark model.

A comparison of this statistic across the 24 forecasting models indicates that allowing
for time-varying parameters can lead to gains in forecasting. In particular, models that
incorporate a gradual change in parameters and also include a large set of explanatory
variables do particularly well as far as the inflation forecast is concerned recording
gains (over the benchmark) which are significant from a statistical point of view.
Models that include this extra information also appear to be useful in forecasting
interest rates. Models that incorporate more abrupt changes in parameters can do well
when forecasting GDP growth. This feature also appears to surface during the financial
crisis of 2008-09 when this type of parameter variation proves helpful in predicting the

large contraction in GDP growth.

BANK OF ENGLAND Working Paper No. ? January 2012



1 Introduction

A large and growing literature has proposed and applied a number of empirical models
that incorporate the possibility of structural shifts in the model parameters. The series
of papers by Tom Sargent and co-authors on the evolving dynamics of US inflation is a
often cited example of this literature. In particular, Cogley and Sargent (2002), Cogley
and Sargent (2005) and Cogley, Primiceri and Sargent (2008) use time-varying
parameter VARs (TVP-VAR) to explore the possibility of shifts in inflation dynamics,
with Benati (2007) applying this methodology to model the temporal shifts in UK
macroeconomic dynamics. In contrast, Sims and Zha (2006), model changing US
macroeconomic dynamics using a regime-switching VAR (see Groen and Mumtaz
(2008) for an application to the United Kingdom). Balke (2000) highlights potential
non-linearities in output and inflation dynamics and use threshold VAR (TVAR)
models to explore non-linear dynamics in output and inflation. Recent papers have
estimated time-varying factor augmented VAR (TVP-FAVAR) models in order to
incorporate more information into the empirical model. For example, Baumeister, Liu
and Mumtaz (2010) argue that incorporating a large information set can be important
when modelling changes in the monetary transmission mechanism and use a

TVP-FAVAR to estimate the evolving response to US monetary policy shocks.

Most of this literature has focused on describing the evolution in macroeconomic
dynamics. In contrast, research on the forecasting ability of these models has been
more limited in number and scope. D’ Agostino, Gambetti and Giannone (2011) focus
on TVP-VARs and show that they provide more accurate forecasts of US inflation and
unemployment when compared to fixed-coefficient VARs. In a recent contribution,
Eickmeier, Lemke and Marcellino (2011) present a comparison of the forecasting
performance of the TVP-FAVAR with its fixed-coefficient counterpart and AR models
with time-varying parameters for US data over the 1995-2007 period. The authors
show that there are some gains (in terms of forecasting performance) from allowing

time-variation in model parameters and exploiting a large information set.

The aim of this paper is to extend the forecast comparison exercise in D’ Agostino et al
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(2011) and Eickmeier et al (2011) along two dimensions. First, our paper compares the
forecast performance of a much wider range of models with time-varying parameters.
In particular, we compare the forecasting performance of (a range of) regime-switching
models, TVP-VARs, TVP-FAVARs, TVARs, smooth transition VARs (ST-VARSs), the
unobserved component model with stochastic volatility proposed by Stock and Watson
(2007), rolling VARs and recursive VARs. The forecast comparison is carried out
recursively over the period 1976 Q1 to 2007 Q4 and thus covers a longer period than
Eickmeier ef al (2011). Second, while previous papers have largely focused on the
United States, we work with UK data and try to establish of these time-varying
parameter models are useful for forecasting UK inflation, GDP growth and the
short-term interest rate. This is a policy relevant question as the United Kingdom has
experienced large changes in the dynamics of key macro variables over the last three
decades. In addition, the recent financial crisis has been associated with large
movements in inflation and output growth again highlighting the possibility of
structural change. Note also that our analysis has a different focus than the analysis in
Eklund, Kapetanios and Price (2010) and Clark and McCracken (2009). While these
papers largely focus on forecasting performance under structural change in a Monte
Carlo setting our exercise is a direct application to UK data using time-varying

parameter models that are currently popular in empirical work.!

The forecast comparison exercise brings out the following main results:

e On average, the TVP-VAR model delivers the most accurate forecasts for GDP
growth at the one-year forecast horizon, with a root mean squared error (RMSE) 6%
lower than an AR(1) model. The TVAR model also performs well, especially over
the post-1992 period.

e Models with time-varying parameters lead to a substantial improvement in inflation
forecasts. At the one-year horizon, the TVP-FAVAR model has an average RMSE

23% lower than an AR(1) model. A similar forecasting performance is delivered by

"Faust and Wright (2011) compare the performance of a large number of models in forecasting US inflation. Their focus,
however, is not exclusively on models with time-varying parameters.
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the TVP-VAR model and Stock and Watson’s unobserved component model, where
the latter delivers the most accurate forecasts over the post-1992 period.

e Over the recent financial crisis, models that allow for regime-switching and
non-linear dynamics appear to be more successful in matching the profile of inflation

and GDP growth than specifications that allow for parameter drift.

The paper is organised as follow. Section 2 provides details on the data used in this
study and describes the real time out of sample forecasting exercise. Section 3
describes the main forecasting models used in this study. Section 4 describes the main

results in detail.

2 Data and forecasting methodology

2.1 Data

Our main data set consists of quarterly annualised real GDP growth, quarterly
annualised inflation and the three-month Treasury bill rate. Quarterly data on these

variables is available from 1955 Q1 to 2010 Q4.

The GDP growth series is constructed using real-time data on GDP obtained from the
Office for National Statistics. Vintages of GDP data covering our sample period are
available 1976 Q1 onwards and these are used in our forecasting exercise as described

below. GDP growth is defined as 400 times the log difference of GDP.

The inflation series is based on the seasonally adjusted harmonised index of consumer
prices spliced with the retail prices index excluding mortgage payments. This data is
obtained from the Bank of England database. Inflation is calculated as 400 times the
log difference of this price index. The three-month Treasury bill rate is obtained from

Global Financial Data.
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Root mean squared error

In particular, we use root mean squared error (RMSE) calculated as

T+h (7 _ 2
RMSE = ,| ¥ &-z) hZ’)

t=T+1

4y

where T+ 1,T +2,..T + h denotes the forecast horizon, Z, denotes the forecast, while
Z, denotes actual data. For GDP growth, the forecast error 7, — Z, is calculated using

the latest available vintage. We estimate the RMSE for 4 = 1,4, 8 and 12 quarters.

In order to compare the performance of the different forecasting models we use the
RMSE of each model relative to a benchmark model: an AR(1) regression estimated

via OLS recursively over each subsample.
Diebold-Mariano statistic

To test formally whether the predictive accuracy delivered by the non-linear models
considered in this study is superior to that obtained using the AR(1) regression
estimated via OLS recursively over each subsample, we use the statistic developed by
Diebold and Mariano (1995).2 The accuracy of each forecast is measured by using the
squared error loss function — L (Z},Z,) = (Z — Z,)2 wheret =T +1,...,T +Rand R is
the length of the forecast evaluation sample. Under the null hypothesis the expected

forecast loss of using one model instead of the other is the same
H,:E[L(Z,Z)] =E[L(Z*,z,)] 2)

This can be tested as a 7-statistic, namely

T+R

1
1yTHR g
\/E% S 1.96 3)
d

where d, = (Z{ — Z,)2 — (ZiAR — Z,)2 and &7 is the heteroskedasticity and

autocorrelation consistent variance estimator developed by Newey and West (1987).

2Note the Diebold-Mariano (DM) statistic is calculated for the entire sample, not for each point in time as the RMSE is
derived. Furthermore, the DM statistic will coincide with the RMSE only if the forecasting horizon equals one. Finally,
there could be cases when the DM test is unable to distinguish between models even when there are quite large reductions
in RMSE.
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The information that the h-step ahead forecast error follows a moving average process

of order i1 — 1 is used to decide about the bandwidth of the kernel.?

Trace statistic

In addition we calculate the trace of the forecast error covariance matrix — £ — to
assess the multivariate performance of the competing models. Consider the singular
valued decomposition of Q = VAV’ where V is the matrix of eigenvectors and A is the
diagonal matrix with eigenvalues in descending order. The eigenvalues are the
variances of the principal components and the trace of € equals the sum of their
eigenvalues. Based on these observations Adolfson, Linde and Villani (2007) argue
that the trace will, to a large extent, be determined by the forecasting performance of
the least predictable dimensions (largest eigenvalues). It should be mentioned that this
statistic has its limitations. For instance, Clements and Hendry (1995) point out that
the model ranking based on this statistic is affected by linear transformations of the
forecasting variables. However, this is not the case in our exercise since all variables

are expressed in percentage terms.

3 Forecasting models

In this section we provide a description of the forecasting models used in this study.
Note that the forecasts that the Monetary Policy Committee publishes in the Inflation
Report are their best collective judgement of future developments given particular
interest rate paths and are not based on any particular formal model. Naturally, they are
informed by the insights from many different models, including models that recognise

the existence of structural change such as those examined here.

Following D’ Agostino et al (2011) (and the convention in a large number of papers

using VARs with time-varying parameters — see for example Cogley and Sargent

3Given that these models are non-linear and their parameters are functions of time (not just a sequence that converges to a
fixed point) and that we have calculated the DM statistic for the entire sample (not just for each data release, T — o), we
can perhaps make the assumption that these models are non-nested and standard asymptotic theory can be applied. The
same is true for the AR(1).
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(2002), Primiceri (2005) and Cogley and Sargent (2005)) we use a lag length of two in

all models considered below.
3.1 Regime-switching VAR

To account for the possibility of structural shifts, we model inflation, output and
interest rate dynamics using a regime-switching VAR of the following form

K
Zt = CSr —|— ZBSth*]. —|— 9}1{2& (4)

Jj=1

where Z, is a T x 3 data matrix that contains GDP growth, inflation and the interest
rate. By and Q,, are regime-dependent autoregressive coefficients and reduced-form
variance-covariance matrices. The VAR model allows for M breaks at unknown dates,
as in Chib (1998), these are modelled via the latent state variable S; for the VAR
coefficients and H, for the error covariance matrix. In our most general
regime-switching model, the state variables S and H are assumed to evolve
independently with their transition governed by a first-order Markov chains with M + 1
regimes with restricted transition probabilities p;; = p (S, = j|S;—1 = i) and

gij = p(H, = j|H,_, = i). The transition probability matrices are defined as
Dij»qij > 0ifi=j (5)
piigij > 0if j=i+1

pum,qun = 1
Dij>»qij = 0 otherwise.

For example, if M = 4 the transition matrices are defined as

P 0 0 0 qn 0 0 0

- 1— 0 0 - 1— 0 0
p— P P22 o= qn q2

0 l—pn p3 O 0 I—g» g3 O

0 0 1— P33 1 0 0 1-— q33 1

Equations (4) and (5) define a Markov-switching VAR with non-recurrent states where
transitions are allowed in a sequential manner. For example, to move from regime 1 to
regime 3, the process has to visit regime 2. Similarly, transitions to past regimes are

not allowed. However, this structure is not necessarily more restrictive than a standard

Markov-switching model, but simply implies that any new regimes are given a new
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label, rather than being explicitly linked to past states (as in a standard
Markov-switching model). This formulation implies that the regimes are identified by
assumption and no ‘label switching’ problem exists when implementing the Gibbs
sampler. This feature offers a clear computational advantage (relative to
regime-switching VAR with unrestricted transition probabilities) by removing the need
for regime normalisation which can be computationally challenging as the number of

regimes become larger.

We estimate three versions of this regime-switching model: (1) The general switching
model as set out in equation (4) which allows for independent breaks in the VAR
coefficients and error covariance. (2) A version of the regime-switching VAR where
the breaks in VAR coefficients and the covariance matrix are restricted to occur jointly
and (3) A version of the regime-switching VAR where only breaks in the VAR
coefficients are allowed. Specification (2) is estimated to gauge if allowing for
different timing in variance and coefficient breaks offers any advantage in terms of
forecasting performance. Specification (3) which does not include volatility breaks is
included in order to shed light on the role played by heteroscedasticity. In each case,

we allow for up to three breaks or four regimes.

Versions of this regime-switching model have been used in a number of recent studies
to describe the changing dynamics of key macroeconomic time series. For example
Sims and Zha (2006) argue that a model that incorporates regime-switching dynamics
provides a good description of the evolution of monetary policy and inflation dynamics
in the United States. Groen and Mumtaz (2008) provide a similar analysis for the
United Kingdom and show that a regime-switching VAR is useful for describing the
change in inflation persistence. It may also be argued that allowing for discrete shifts in
coefficients and error variances is especially appropriate given the current crisis and its

associated impact on macroeconomic variables.

The models are estimated using a Gibbs sampling algorithm. The prior distributions
and conditional posteriors are described in the appendix. Note that we employ a
normal inverse Wishart prior on the VAR parameters in each regime. However, as

described in the appendix the tightness parameters are set to large values rendering the
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prior distributions non-informative.
3.2 Time-varying VAR

In a recent paper, D’ Agostino et al (2011) show that a VAR with time-varying
parameters and stochastic volatility performs well in forecasting US macroeconomic
data. In addition, a voluminous literature has used the time-varying VAR model to
investigate the possibility of a temporal shift in UK and US inflation dynamics.
Prominent examples of papers that employ this model for the United States include
Cogley and Sargent (2002), Cogley and Sargent (2005) and Cogley et al (2008). Benati
(2007) and Mumtaz and Sunder-Plassmann (2010) use the time-vaying VAR model to
capture the time-varying dynamics of UK macroeconomic and financial time series.
Relative to the regime-switching model, the time-varying VAR incorporates a more
flexible specification for time-varying parameters. In particular, it allows independent

time-variation in each VAR equation.

We use a general version of this model as a forecasting model for UK GDP growth,

inflation and interest rates. In particular we employ the following specification:

K
Z=c+Y BZ_;+Q"%, (6)
j=1

where the VAR coefficients &, = {c¢,, B;} evolve as random walks
cI)t = cI)t—l + n;

As in Cogley and Sargent (2005), the covariance matrix of the innovations v, is
factored as

VAR(v,) =Q, =A"H, (A" (7)

The time-varying matrices H, and A, are defined as:

hl )t 0 0 1 0 0
Ht = 0 h27, 0 At = Ol s 1 0 (8)
0 0 hsy 31, O3, 1

with the 4;, evolving as geometric random walks,
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ln hi,l‘ - ln hl"tfl +Vt'

Following Primiceri (2005), we postulate the non-zero and non-one elements of the

matrix A, to evolve as driftless random walks,

o =01+ T, 9

In our first specification we consider a version of this TVP-VAR estimated recently by
Cogley et al (2008) and Baumeister and Benati (2010). These authors generalise the
specification adopted in Cogley and Sargent (2005) by allowing for stochastic volatility

in 1,. In particular, we model var(n,) = Q; as
0, =A"H (A" (10)

where A is a lower triangular matrix, while H, = diag (hy;.....hy,) with

M =N x (N x L+1) and &, evolving as

Inhj =1Inhj_;+1i, (11)

As discussed in Baumeister and Benati (2010), one advantage of this extended
specification is that it allows for the possibility that the degree of time-variation varies
over the sample. For example, it accounts for the possibility that the VAR coefficients
change faster during crisis periods while the degree of parameter drift is smaller over
tranquil periods. We consider two further restricted specifications. First, following

D’ Agostino et al (2011), we estimate a time-varying VAR with a constant degree of
parameter drift —ie O, = Q. Second, to explore the role played by heteroscedasticity,
we estimate a TVP-VAR with Q, = Q as in Cogley and Sargent (2002).

The models are estimated using a Gibbs sampling algorithm. The priors distributions
and conditional posteriors are described in the appendix. We point out two aspects:
first, the prior for Q (and for Hj in the specification which allows for a time-varying Q)
is set using a pre-sample of 7y = 40 quarters. In particular, let Oy, s denote the OLS

estimate of the coefficient covariance matrix using the training sample. When Q is
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time-invariant, its prior distribution is assumed to be inverse Wishart with a scale
matrix given by QO = Qs x Ty x k where the scalar k = 3.5¢ — 04 as in Cogley and
Sargent (2005). The prior degrees of freedom are set equal to 7, = 40 the length of the
training sample. When Q is time-varying, a prior distribution is required for the initial
values of H,. The mean of this log normal prior is set as the log of
diag(AorsQorsAprs) X Ty X k where Aoy is the inverse of the Choleski decomposition
of Qors. The variance of the prior distribution is set to 1. On a log scale this represents

an agnostic prior about the initial value of H,.
3.3 Time-varying factor augmented VAR

Recent empirical work on the evolving monetary transmission mechanism has
employed time-varying factor augmented VAR (TVP-FAVAR) models as a way of
incorporating additional information into the empirical specification (see for example
Baumeister et al (2010) and Eickmeier et al (2011) and the references therein). As
shown in Eickmeier et al (2011), these models therefore offer a convenient way to
combine a large information set and time-varying dynamics. As shown by Eickmeier
et al (2011) for the United States, the time-varying FAVAR delivers superior
forecasting performance than its fixed-coefficient counterpart and time-varying models
that do not include information from a large data set. Following Eickmeier ez al (2011)

we estimate the following TVP-FAVAR model

X, = BFt + e 12)
X 1/2

F = o+ ZBzEfj‘i‘-Qz/ &

j=1
where X, = [x;,z]. x;; is a T x M matrix of macroeconomic and financial variables and
Z, 1s the variable we are interested in forecasting. That is z, is either GDP growth,
inflation or the three-month Treasury bill rate. The matrix F; contains the K latent
factors that summarise the information in the panel x;, and z,. That is z, = [fi,, .. fxs, 2] -
B denotes the factor-loading matrix, while e;, represents the idiosyncratic component.
We allow for first-order serial correlation in e; with e; = p,e;_; +v;;. More details on
the observation equation can be found in Baumeister ez al (2010). The dynamics of F;

are described by a time-varying VAR model with stochastic volatility. The coefficients

of this transition equation evolve as random walks (the shock on the random walk has a
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fixed variance). The variance of the shocks is specified as in equation (7). In our
application we fix the number of latent factors to three for computational reasons. In
particular, with a larger number of endogeneous variables it becomes increasingly
difficult to keep the transition equation of the model stable at each point in time. Given
that the model needs to be estimated recursively (over 100 recursive data samples)

computational efficiency is vital in our exercise.

The model is estimated using a Gibbs sampling algorithm. This algorithm is an
extended version of the sampler used for the time-varying VAR and is described in
Appendix D. Note that the priors for the hyperparameters of the transition equation are
set as described in the previous section. Appendix H describes the data set x; used for
the forecasting exercise. In short, x; contains 43 variables that represent data on real
activity, inflation, money supply, interest rates and exchange rates. This data set is
chosen as it is consistently available over the sample period used in our forecasting

exercise.

We also consider two restricted versions of the model in (12). First, we fix Q, = Q and
only allow time-variation in the coefficients of the transition equation. Second, we
estimate a fixed-coefficient FAVAR. These restricted models are estimated to gauge the
role played by time-varying parameters (in addition to the impact of the larger

information set) in driving any change in forecasting performance.

3.4 Unobserved component model with stochastic volatility

In a recent contribution Stock and Watson (2007) show that a univariate unobserved
component (UC) model with stochastic volatility performs well in forecasting US
inflation. Following Stock and Watson (2007) we consider this model as a possible

alternative specification to forecast UK data. The UC model with stochastic volatility
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is given by:

Z, = B,+or

B, = B+ Vo,
Inc, = Inc,_|+ey,var(ey,) =g
In®, = In®, | +ey,var(ey) =g

where Z, contains data on GDP growth, inflation or the three-month Treasury bill yield.

The model is estimated using a MCMC algorithm which is described in Appendix E.
3.5 Threshold and smooth transition VAR models

Threshold and smooth transition VAR models allow for different VAR parameters in
different regimes. The switching mechanism in this case is intuitive and simple,
making these models very attractive and, consequently, popular. In addition (unlike
regime-switching and time-varying parameter models), the time-variation in the
parameters is linked explicitly to a threshold variable. In other words, parameters are
allowed to be different in expansions and recessions, periods of high or low inflation
and periods of high and low interest rates. While regime-switching and time-varying
models can account for this possibility, the parameter change in these models is

governed by a more general process.

These models can be expressed as follows:
K

Z=c5+Y Bis+9Qf% 13)
j=1

However, the state variable S, is constructed differently now. In the threshold case S, is

a discrete variable that takes values 1 or 0 according to the following rule

(

1 lf Zi,t—d S Cq
1 ife < Zi,t—d <y
Si=9q (14)

1 ifey0<Ziy—a<cu-

| 0 otherwise
where Z;, is the variable i of the Z vector, M is the number of regimes and

c=(cy, ...,cM,l)' is the vector of threshold values. In our exercise M has been set
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equal to two and d equal to one, implying that

~ 1 if Zw,l S c
S = ' 1s)

0 otherwise

In the smooth transition case S, is a continuous variable given by

N I

S = i+jXP(Y(Zi.r11€)) (16)

T+exp(—Y(Ziy1—0))

If we assume conjugate priors for the VAR parameters then conditional on y and ¢ the
posterior distribution of the VAR coefficient vector is the conditional normal Wishart
distribution. Unfortunately, the posterior distribution of Y and ¢ conditional the VAR
parameter vector is unknown, meaning that we have to employ both the Gibbs and
Metropolis-Hasting samplers to derive the full posterior distribution of the entire
estimated parameter vector (Chen and Lee (1995), Chen (1998) and Lopes and Salazar

(2006)).
3.6 Rolling and recursive VAR model

Our final two forecasting models are based on the following VAR
K
Z =c+Y BZ,_;+Q'%, 17)
=1

where Z, is a T x 3 data matrix that contains GDP growth, inflation and the interest
rate. The recursive VAR is estimated recursively starting in 1976 Q1 until the end of
the sample period. The rolling VAR model uses a ten-year rolling window to estimate
the model parameters. From an applied point of view, the main virtue of these models
is the fact that they are simple to estimate. A finding that these models forecast well
relative to the more sophisticated alternatives would therefore have practical

importance.

3.7 Bayesian model averaging

We also consider if the average forecast from our 24 forecasting models can improve

upon the individual forecasts presented above. In particular, we combine the forecasts
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using Bayesian model averaging (BMA):
Zigua =Y, ZimP(Z,\m) (18)
m=1
where Z’BMA denotes the BMA forecast at time t, Zm denotes the forecast from model

m and P(Z,\m) is the marginal likelihood.

Calculation of the marginal likelihood in equation (18) is the key task when estimating
ZLBMA. Following Chib (1995) we consider the following representation for the log

marginal likelihood:
InP(Z\m) =InF(Z\Z,m)+1Inp(E) —InG (E\Z) (19)

where InF (Z,\E, m) is the log likelihood, In p (@) is the log prior density and

InG (@\Z,) is the log posterior density with all three terms evaluated at the posterior
mean for the model parameters &. The prior density In p (@) is easy to evaluate.
Similarly, the log likelihood of the models we consider can be evaluated either directly
or via non-linear filters. The final term InG (E\Z,) requires more work. Following
Chib (1995) and Chib and Jeliazkov (2001) we proceed by factorising In G (::‘.\Z,) into
conditional and marginal densities of various parameter blocks and using additional
and Gibbs and Metropolis runs to approximate these densities. Details are provided in

the appendix.

In Table B we present the estimated log marginal likelihoods (calculated over the full
estimation sample) for the forecasting models. The TVP-FAVAR model with
homoscedastic shocks has the largest marginal likelihood followed by the TVP-FAVAR
model that allows for time-varyng coefficients and heteroscedastic shocks. Within the
TVP-VAR models, the homoscedasic version performs the best in terms of the
marginal likelihood with little support for the generalised TVP-VAR that allows for a
time-varying Q matrix. It is also interesting to note that the threshold and STAR
models fit the data better than the regime-switching models implying that the type of
non-linear dynamics built into these models are important for UK data. Finally, the
rolling and recursive VAREs fit the data well with a marginal likelihood substantially

higher than the time-varying VARs. This suggests that for our data set this simple form
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of parameter variation inherent in these models is preferred to stochastic parameter

drift.

4 Results

The left-hand side of Tables C to E present the estimated RMSE for each model at the
one, four, eight and twelve quarter horizons. The colours indicate how better (green) or
worse (blue) these different forecasting models do compared to an AR(1) model. The
right-hand side offers an alternative evaluation of the forecasting performance in terms
of the Diebold and Mariano (1995) test. As for the RMSE, green indicates that these
models outperform the AR(1), blue the opposite and white that these models’ forecasts
are statistically indistinguishable from each other. We evaluate the forecast
performance over the full sample, 1976 Q1 to 2007 Q4 and over the period 1993 Q1 to
2007 Q4. Results for this latter subsample are presented separately as recent studies
have highlighted a decline in predictability over the great moderation period (see for
example Benati and Surico (2008)). It is, therefore, interesting to check if the
forecasting models described above can outperform the AR(1) model over this
subsample. The final table presents a multivariate measure of forecast accuracy,

namely the trace of the forecast error covariance matrix.

4.1 Opverall forecast performance

4.1.1 GDP growth

Consider the RMSE for GDP growth. Over the full sample, 1976-2007, the TVP-VAR
model outperforms the other forecasting models at all forecasting horizons. The largest
reduction in RMSE relative to the AR(1) model occurs at the one and four-quarter
forecast horizon with the the TVP-VAR model’s performance close to the AR model at
longer horizons. However the DM statistic is not able to distinguish between the
forecasting performance of an AR(1) model and that of a TVP-VAR (standard) (and
hence white cells on the right-hand side of Table C). Note also that allowing for
heteroscedastic shocks in the TVP model improves forecasting performance — the

homoscedastic TVP-VAR has a larger RMSE at all forecast horizons. The TVAR and
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ST-VAR model with inflation as the threshold variable also performs well with a
relative RMSE close to the TVP-VAR at the one and four-quarter horizons. In addition,
the UC model performs well at the one-quarter horizon. Note that this is the only
model which shows a statistically significant improvement over the AR(1) benchmark

according to the Diebold and Mariano (1995) test.

Over the great moderation period, the TVP-VAR model is the best-performing model at
the four-quarter forecast horizon according to a RMSE criterion. However, the TVAR
(with inflation as the threshold variable) outperforms the TVP-VAR at one-quarter
horizon, while the FAVAR model delivers the most accurate GDP forecasts at the eight

and twelve-quarter horizons, albeit with a forecast accuracy close the the AR(1) model.

Chart 1 explores the evolution of the RMSE of these models over the forecasting
period. The chart plots the smoothed relative RMSE for the TVP-VAR, TVAR and
ST-VAR models at the four-quarter horizon over the forecasting sample. In the
pre-2000 period, the performance of three models is quite similar. The performance of
all three models deteriorates after 2000. Note, however, that this deterioration is largest

for the TVP-VAR and smallest for the TVAR model.

4.1.2 Inflation

At the one-quarter forecast horizon, the TVP-VAR model, the UC model and the
TVP-FAVAR model deliver, on average, the most accurate forecasts for inflation. These
models have a RMSE 12% to 15% lower than the AR(1) model. This improvement
over the AR(1) benchmark is starker at the four-quarter horizon. At the four-quarter
horizon, the TVP-FAVAR model has the lowest relative RMSE on average over the full
forecast sample — an improvement of 23% over the AR model. The TVP-FAVAR with
homoscedastic shocks delivers a very similar result to its heteroscedastic counterpart.
Note, however, that the inflation forecasts from the fixed-coefficient FAVAR model are
substantially less accurate. These results suggest that the extra information included in
the factor model and the presence of time-varying coefficients leads to an improvement
in the accuracy of inflation forecasts. At the four-quarter horizon, the BMA forecast

also does well with a relative RMSE close to the TVP-FAVAR models.
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It is also worth noting that the Diebold and Mariano (1995) test indicates the
TVP-FAVAR models are the only specifications (at the four-quarter horizon and over
the full sample) with a significant improvement in forecast performance relative to the
benchmark model. The TVP-FAVAR models are the best performers at the eight and

the twelve-quarter horizon.

Over the great moderation period, Stock and Watson’s unobserved component model
leads to the most accurate inflation forecasts at the one, four and eight-quarter horizon.
For example, at the four-quarter horizon, this model leads to an average RMSE which
is 54% lower than the AR(1) benchmark. Over this subsample a number of other
forecasting models also stand out. For example, at the one-quarter horizon, the three
regime-switching VAR (with time-invariant covariance) and the rolling VAR model
have the lowest RMSE after the UC model. At the four-quarter horizon, the
TVP-FAVAR, the TVP-VAR and the BMA procedure also deliver forecasts almost as
accurate as the UC model. The Diebold and Mariano (1995) test provides strong
evidence that over this subsample these forecasting models provide significantly more

accurate forecasts than the benchmark.

In Chart 2 we examine the evolution of the relative RMSE (at the four-quarter horizon)
of the best-performing inflation forecasting models. It is interesting to note that there is
a distinct change in relative RMSEs after the early 1990s, with the inflation-targeting
period characterised by a substantially improved performance by the four time-varying
parameter models relative to the benchmark. Note that several studies have
documented a change in UK inflation dynamics at this juncture (see for example
Benati (2007)). Our results suggest that models with evolving parameters were able to
adapt to this change better than recursively estimated fixed-coefficient models. During
the pre-1990 period, the TVP-FAVAR model generally has the lowest relative RMSE,
especially during the late 1970s and the early 1980s when some of the other

forecasting models in Chart 2 appeared to be inaccurate relative to the benchmark.

Overall, our results for inflation point to the role played by time-varying parameters in

delivering accurate inflation forecasts.
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4.1.3 Short-term interest rates

Stock and Watson’s unobserved component model has the lowest relative RMSE (on
average over the period 1976-2007) at the one and four-quarter horizon in forecasting
the short-term interest rate. The FAVAR model also performs well at the four-quarter
horizon. At longer forecast horizons, the TVAR model (with inflation as the threshold
variable) produces the lowest relative RMSE on average. Note that when considering
the entire forecast period, the gains from these models relative to the benchmark are

modest.

In contrast, when considering the great moderation period the difference in the
performance of some of the forecasting models and the AR(1) benchmark are larger.
At the one and four-quarter horizons, the TVP-VAR model produces the most accurate
interest rate forecasts leading to a 20% reduction in RMSE relative to the AR(1) model
(with a significant Diebold and Mariano (1995) test statistic). The TVAR model is the

best-performing model at longer horizons over this period.

4.2 Model-specific results

In this subsection, we consider forecasting performance across different specifications
of the estimated models. Consider, first, the regime-switching models. It is
immediately clear that allowing for independent regime shifts in the VAR coefficients
and error covariance matrix, generally leads to a deterioration in forecasting accuracy
(as measured by the trace of the forecast error covariance matrix). In fact, within the
estimated regime-switching models, the best forecasting performance (ie lowest trace)
appears to be delivered by the specification that imposes a common regime variable for
the VAR coefficients and the covariance matrix or only allows the coefficients to

switch.

From a forecast accuracy point of view, the general TVP-VAR proposed in Cogley et al
(2008) and Baumeister and Benati (2010) (that allows for a time-varying Q matrix)
displays the least favourable performance within the TVP-VARSs considered in this

study. The best performance on the basis of the trace of the forecast error covariance
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matrix and over all forecast horizons is delivered by the standard TVP-VAR that allows

for stochastic volatility and the homoscedastic TVP-VAR.

According to the trace criteria, the TVP-FAVAR with homoscedastic shocks delivers
the best forecast performance (within the FAVAR models) at the four, eight and twelve
quarter horizons. Note, also that at these forecasting horizons (and over the full
forecast sample) this model performs better than all the other competing models. This
again brings out the influence of time-varying parameters and a large information set

on forecast performance.

The TVAR model that uses the lag of inflation as the threshold variable consistently
delivers more accurate forecasts of all three variables at the four, eight and
twelve-quarter forecasts horizon, pointing to the importance of regime switches driven
by lagged inflation. The estimates for ST-VAR model suggest a similar result, albeit

the difference across the STAR models is less stark.

The performance of the recursive and rolling VAR models is quite similar to each
other. The rolling VAR performs slightly better than the recursive VAR model at the
one, eight and twelve quarter horizons, with the recursive VAR delivering a lower trace

at the four-quarter horizon.

Finally, the BMA procedure does well on the basis of the trace at the four-quarter
horizon with an estimated trace close to the best-performing model. At longer forecast

horizons, the BMA procedure produces the most accurate forecast in terms of the trace.

4.3 Forecast performance and the recent financial crisis

In this subsection we consider how the forecasts from our models perform when
considering the period 2008 Q1 to 2010 Q4, a period over which the financial crisis
intensified. In particular, we consider how the forecasting models perform given the
information set at 2007 Q4. Chart 3 plots the one step and four step ahead recursive
forecasts for these variables from the 24 forecasting models alongside the actual

realised values over these quarters.
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Consider the one step ahead GDP forecast in the top-left panel. One striking feature of
this panel is that most models predicted zero or positive growth over the second half of
2008 and 2009 when actual growth was strongly negative. In 2008 Q4, actual
annualised GDP growth was -3.6%. The three STAR models were the only
specifications to predict negative GDP growth with forecasts of around -1%. Note that
these models predicted a growth rate in 2008 Q4 which was much lower than the
realised value. In 2009 Q1, the prediction of these three STAR models of a GDP
growth rate of -7% was fairly close to the actual value, with the forecasts from these
models overshooting in the next quarter. By 2009 Q3, a number of other forecasting
models (RSVAR* (three and four regimes), RSVAR** (three and four regimes),
TVP-FAVAR and FAVAR, UC, TVAR (inflation) and the rolling VAR) were also
predicting negative growth. Overall, the STAR models delivered plausible (but
volatile) one-step forecasts over the large contraction in GDP growth in 2008 and
2009. The top-right panel of the chart shows that a similar interpretation can be placed

on the four step ahead GDP forecasts.

The middle panel of Chart 3 shows the one and four step ahead forecasts for inflation.
In 2008 Q4, annualised quarterly inflation was 5.5%. It then dropped to 0.8% in the
next quarter before reaching a trough at 0.1%. Inflation then rose to around 4% by
mid-2010. Most of the forecasting models failed to predict (at the one-quarter
horizon), the large drop in inflation between 2008 Q4 and 2009 Q1. The exceptions are
the general regime-switching VAR with two regimes and the three STAR models.
These four specifications predict a fall in inflation (over this quarter) from 3% to 10%,
while the other forecasting models essentially indicate no change. In contrast, the
majority of the forecasting models predict a large fall in inflation between 2009 Q1 and
2009 Q2, while actual inflation remained fairly stable. Over the second half of 2009
and 2010, the gentle increase in inflation is matched by the profile of most one step
ahead forecasts. At the four-quarter forecast horizon, most forecasting models
predicted higher-than-actual inflation over 2008 and the first half of 2009, and
underpredicted inflation over the second half of 2009 and 2010 QI.

As with the one step ahead inflation forecast, the forecasting models have a hard time

in matching the sharp fall in the short-term interest rate in the last quarter of 2008
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(bottom-left panel). However, after 2009 Q2, the models predict interest rates close to
zero. The bottom-right panel shows that the four-quarter forecasts are quite far away
from the true realised values, possibly reflecting the atheoretical nature of the

forecasting models.

5 Conclusions

This paper investigates the performance of a variety of models with time-varying
parameters in forecasting UK GDP growth, inflation and the short-term interest rate.
Overall, different models perform better than others on occasions, therefore it is most
appropriate to consider a suite of models when forecasting — and that is what

policymakers typically do, including the MPC.

More specifically, the TVP-VAR and the TVAR model provide forecasts for GDP
growth with a lower average RMSE than an AR(1) model. The TVAR model also
appears to perform better in matching the GDP growth profile over the recent financial

Crisis.

Models with time-varying parameters lead to a large improvement in inflation
forecasting performance over the AR(1) benchmark. In particular, the TVP-FAVAR
model, the TVP-VAR and the UC model have a RMSE that is substantially lower than

the benchmark model.

Stock and Watson’s unobserved component model, the FAVAR, the TVP-VAR and the
TVAR standout when considering the interest rate forecast. But, in general, it appears
that the models considered in this study are less successful at forecasting interest rates

than GDP growth and inflation.

Across the three variables, the TVP-FAVAR model stands out, delivering the most
accurate forecasts at the four-quarter horizon on average over the sample. This
highlights the role played by a large information set and time-varying parameters in

delivering forecast accuracy.

BANK OF ENGLAND Working Paper No. ? January 2012

26



Appendix A: Tables and charts

Chart 1: RMSE error at the four-quarter horizon of TVP-VAR, TVAR and ST-
VAR models in forecasting GDP growth (relative to an AR(1) model)

RMSE relative to an AR(1) model

2.4 F

TVP—VAR

2.2

TVAR(Inflation) 1
ST—VAR (inflation)

Chart 2: RMSE error at the four-quarter horizon of TVP-FAVAR, TVP-VAR,
rolling VAR and UC models in forecasting inflation (relative to an AR(1) model)

RMSE relative to an AR(1) model

TVP—FAVAR
TVP—VAR
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VAR((rolling)
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Chart 3: Forecasts and actual data 2008 Q1 to 2010 Q4
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Table B: Log marginal likelihood for the forecasting models over the full estimation

sample

Log marginal likelihood

RSVAR two regimes
RSVAR three regimes
RSVAR four regimes
RSVAR* two regimes
RSVAR¥* three regimes
RSVAR* four regimes
RSVAR** two regimes
RSVAR*#* three regimes
RSVAR** four regimes
TVP-VAR (General)
TVP-VAR (Standard)
TVP-VAR (Homoscedastic)
TVP-FAVAR
TVP-FAVAR (Homoscedastic)
FAVAR
ucC
TVAR (GDP)
TVAR (Inflation)
TVAR (Rate)
ST-VAR (GDP)
ST-VAR (Inflation)
ST-VAR (Rate)
VAR (Rolling)
VAR (Recursive)

-915.428
-970.105
-1028.07
-986.545
-984.634
-1063.59
-978.358
-1054.53
-1112.36
-3663.45
-2352.16
-1151.24
527.5055
5673.594
-56.5631
-202.318
-423.984
-414.781
-363.855
-381.474
-265.502
-291.512
-24.1139
116.9715
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Table F

Trace- multivariate forecast evaluation statistic relative to an AR(1) model

1976-2007 1992-2007

Models 1Q 4Q 8Q |12Qf 1Q 4 Q 8Q 12 Q
RSVAR two regimes 16.07 | 2.86 1.73 | 1.32 | 12.15 1.08 0.43 0.38
RSVAR three regimes 4.21 2.50 1.78 1.52 2.34 0.72 0.68 0.70
RSVAR four regimes 4.40 2.82 1.73 | 1.53 1.87 0.84 0.75 0.74
RSVAR* two regimes 1.03 1.25 1.38 | 1.48 1.12 0.62 0.79 0.90
RSVAR* three regimes 1.05 1.25 0.93 | 0.92 0.73 0.44 0.43 0.40
RSVAR* four regimes 1.03 1.18 0.88 | 0.82 0.73 0.35 0.34 0.28
RSVAR** two regimes 1.13 1.07 1.14 | 1.19 1.08 0.60 0.78 0.89
RSVAR** three regimes 1.02 1.49 0.96 [ 0.94 0.82 0.51 0.53 0.53
RSVAR** four regimes 1.05 1.58 0.96 [ 0.90 0.70 0.39 0.42 0.40
TVP-VAR (General) 2.61 1.33 1.23 | 0.84 0.86 0.43 0.47 0.49
TVP-VAR (Standard) 0.95 0.94 0.93 | 0.82 0.82 0.42 0.46 0.45
TVP-VAR (Homoscedastic) 0.95 0.94 0.93 | 0.82 0.82 0.42 0.46 0.45
TVP-FAVAR 0.92 0.90 0.88 | 0.81 0.87 0.44 0.33 0.29
TVP-FAVAR (Homoscedastic) = 1.02 0.77 0.70 | 0.64 0.93 0.42 0.32 0.30
FAVAR 1.30 0.80 0.77 | 0.78 0.81 0.52 0.67 0.77
ucC 0.90 0.86 0.75 | 0.66 0.76 0.41 0.30 0.25
TVAR (GDP) 1.28 1.00 1.29 | 1.39 0.64 0.62 0.81 1.01
TVAR (Inflation) 0.92 0.93 0.94 | 0.83 0.86 0.46 0.39 0.35
TVAR (Rate) 1.03 1.06 1.13 | 1.04 0.96 0.59 0.57 0.54
ST-VAR (GDP) 1.01 0.96 1.10 | 1.10 0.73 0.53 0.69 0.80
ST-VAR (Inflation) 0.99 0.95 1.03 | 0.98 0.76 0.54 0.66 0.73
ST-VAR (Rate) 0.95 0.99 1.10 | 1.08 0.75 0.55 0.70 0.79
VAR (Rolling) 0.95 1.09 1.08 | 1.01 0.68 0.44 0.40 0.35
VAR (Recursive) 0.97 1.00 1.12 | 1.08 0.84 0.50 0.64 0.73
BMA 1.09 0.87 0.69 | 0.50 0.93 0.42 0.31 0.29

Note: A trace value smaller than 1 indicates that our forecasting models outperform the AR(1) (green).

A trace value greater than 1 indicates the opposite (blue).
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Appendix B: Regime-switching VAR

Consider the change-point VAR model

K
Zt = Cg + Z BSthj + Q}_I/ZEZ (B'l)

j=1
where § = 1...M follows a M-state Markov chain. The Gibbs sampler cycles through
the following steps.

1. Sampling the states S; :

Given starting values for the VAR parameters and covariances and the transition
probabilities, the unobserved state variables S and H are drawn using multi-move
Gibbs sampling to draw from the joint conditional density f (S, Z:, 5B, - -, Bk.s, 13)
and f (HI|Z[7CS,BLS7 .., Bk, Q) Kim and Nelson (1999, Chapter 9) show that the

Markov property of the state variable implies that

T—1
f(81z) = £ (Sr|ze) [1 f (Si1Si41,Z) (B-2)
1

1=

where S, = S, or H,. This density can be simulated in two steps:

(a) Calculating f (S7|Zr): The Hamilton (1989) filter provides f (S,|Z,) ,t =1,....T.
The last iteration of the filter provides f (S’T |ZT) .

(b) Calculating f (S;|8;+1,Z): Kim and Nelson (1999, Chapter 9) show that

f(gt’§t+l7yt) °<f(5:+1!§z)f(§z\Yz) (B-3)

where f(8,.1|S;) is the transition probability and f (S;|Z,) is obtained via Hamilton
(1989) filter in step a. Kim and Nelson (1999) (page 214) show how to sample S, from
(B-3).
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2. Sampling cs, B ,...,Bygs,

Conditional on a draw for S, and H, the model in equation (B-1) is simply a sequence
of Bayesian VAR models with heteroscedasticity (when Q evolves independently) .
Collecting the VAR coefficients for regime S = J into the (N x (N x P+ 1)) x 1 vector
Y5, the left-hand side of equation (B-1) for regime S = J into the matrix Y,S and the
right-hand side (ie lags and the intercept terms) of equation (B-1) into the matrix X5,

we rewrite the VAR in each regime in state-space form
vec(Y') = (IyeX*) Y+ Q}/zef

o= 1,

t

and use the Carter and Kohn (2004) algorithm to derive the mean and variance of Y?.
As described below, this requires a Kalman filter recursion. The initial state and its
covariance for the Kalman filter is specified as the mean and variance of the normal

inverse Wishart prior. The prior mean and variance is set using dummy observations:

diag(y,01...YyON)

Jpdiag(c)...0N) 0
T NPx1

.............. Onx Onx
Y, = | andXp = NxNP Nx1 (B-4)

where G....Cy represents standard deviations of the error term of an AR model
estimated using each endogenous variable, v, to Y, denotes the prior mean for the
coefficients on the first lag, T is the tightness of the prior on the VAR coefficients and ¢
is the tightness of the prior on the constant terms. We set T = 10 and ¢ = 1/10000 in

our implementation.

3. Sampling Q
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Conditional on a draw for S, and H,, the error covariance matrix has an inverse Wishart

conditional posterior. We calculate the residuals of the VAR model as
= Z = X'T%) xI(S, =) (B-5)

where Y5 equals TS reshaped into a (N x P+ 1) x N matrix (to be conformable with
X5) andI(.) is an indicator variable. Note that when S; = H, (i.e. the coefficients and
the error covariance matrix switch jointly) or Q4 = € steps 2 and 3 simplify and

standard formulas for the conditional posterior of Bayesian VARs can be used.
4. Sampling P and O:

The prior for the non-zero elements of the transition probability matrix p;; is of the

following form
pi; = D (u;)

where D(.) denotes the Dirichlet distribution and u;; = 15 if i = jand u;; = 1 if i # j.
This choice of u;; implies that the regimes are fairly persistent. The posterior

distribution is:
pij =D (uij+n;))

where 1;; denotes the number of times regime i is followed by regime ;.
We use 200,000 iterations and discard the first 199,000 as burn-in.
B.1 Calculation of the marginal likelihood

A detailed description of the calculation of the marginal likelihood for change-point

models can be found in Bauwens and Rombouts (2012).
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Appendix C: Time-varying VAR

Consider the general time-varying VAR model

K
Z=c,+Y Bz ;+ 9%,
=1

where
O, =D, | +m,,var(n,) =0, (C-1)
VAR(v,) =Q, =A"H, (A" (C-2)
0 =A"H (A" (C-3)

where the structure of A,, H, and A is described in the text.

C.2 Prior distributions and starting values

The initial conditions for the VAR coefficients ¢, are obtained via an OLS estimate of a
fixed-coefficient VAR using the first 40 observations of the sample period. Let 7
denote the OLS estimate of the VAR covariance matrix estimated on the pre-sample
data described above. The prior for the diagonal elements of the VAR covariance
matrix (see (8)) is defined as Inhy ~ N(Iny,,I5) where y, are the diagonal elements of
the Cholesky decomposition of #°/*. The prior for the off-diagonal elements A; is

Ay~ N (a°,V (a°)) where a° are the off-diagonal elements of ¥, with each row
scaled by the corresponding element on the diagonal. V (d"“) is assumed to be
diagonal with the elements set equal to ten times the absolute value of the

corresponding element of a%%.

Let Q.5 denote the OLS estimate of the coefficient covariance matrix using the
training sample. When Q is time-invariant, its prior distribution is assumed to be

inverse Wishart with a scale matrix given by O = Qs x Ty x k where the scalar
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k =3.5¢ — 04 as in Cogley and Sargent (2005). The prior degrees of freedom are set
equal to Ty = 40 the length of the training sample. When Q is time-varying, a prior
distribution is required for the initial values of H,. The mean of this log normal prior is
set as the log of diag(AorLsQorsApLs) X To X k where Ao is the inverse of the Choleski

decomposition of Qprs. The variance of the prior distribution is set to 1.

The prior distribution for the blocks of § is inverse Wishart: S;g ~ 1 W(S’i, K;) where
i = 1..3 indexes the blocks of S. S; is calibrated using 4°**. Specifically, S; is a diagonal
matrix with the relevant elements of 4°/* multiplied by 10~3.Following Cogley and

Sargent (2005) we postulate an inverse-gamma distribution for the elements of G,
2 1074 1

C.3 Simulating the posterior distributions
Time-varying VAR coefficients

The distribution of the time-varying VAR coefficients ¢, conditional on all other
parameters and hyperparameters is linear and Gaussian: ¢,\X;,;,& ~ N (d)T\T,PT\T)
and 0,\0,,, Xi/,Z~N (¢,\,+17¢1+] ,B\,+17¢M> wheret =T —1,..1, E denotes a vector
that holds all the other VAR parameters and

Orr = E(07\Xir, E), Pr7 = Cov (07 \Xis, E) ,0p 1, = E (¢,\Xis,E,6,,,) and
Pori1r,, =Cov(0,\Xi;,E,0,,,) . As shown by Carter and Kohn (2004) the simulation
proceeds as follows. First we use the Kalman filter to draw ¢y and Pr\7 and then
proceed backwards in time using 9., = ¢, + PP, (9,1, —¢,) and

¢z|z+1 = ¢t\t - I)t\fp;ll\tpf\f'

Elements of H,

Following Cogley and Sargent (2005), the diagonal elements of the VAR covariance
matrix are sampled using the Metropolis Hastings algorithm in Jacquier, Polson and

Rossi (2004). Given a draw for ¢, the VAR model can be written as A; (Z) = u;.

L

Where Z, = Z, — Zq)l,,Z,_, = v, and VAR (u,) = H,. Jacquier et al (2004) note that
=1

conditional on other VAR parameters, the distribution A;,i = 1..3 is given by
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I (i [ hie 1 hig 1y uie) = f (i /i) X f (hig [ ig 1) X f (his1 [ hig) =
h, % exp (%ﬁ’) x h;'exp (%ﬁ) where u and 6), denote the mean and the

—(Inhy—u)*
20]11'

variance of the log-normal density ;' exp ( ) . Jacquier et al (2004) suggest

—(Inhy —,U)z

201 ) as the candidate generating density with the acceptance

using &, ' exp (
2
i

probability defined as the ratio of the conditional likelihood /% exp (;Tu,> at the old

and the new draw. This algorithm is applied at each period in the sample.
Element of A,

Given a draw for ¢, the VAR model can be written as A (Z;) = u, where

L
7, =7 — Z¢,7,Zt,l = v, and VAR (1,) = H,. This is a system of equations with
=1
time-varying coefficients and given a block diagonal form for Var(t,) the standard

methods for state-space models described in Carter and Kohn (2004) can be applied.
VAR hyperparameters

Conditional on Z;, ¢, ,, H;, and A;, the innovations to (1),7,, H,, and A, are observable,
which allows us to draw the hyperparameters - the elements of Q, S, and the 67 - from
their respective distributions. When Q is time-varying, its diagonal elements are drawn

using the Jacquier et al (2004) Metropolis step described above.
We use 50,000 iterations and discard the first 49,000 as burn-in.
C.4 Calculation of the marginal likelihood

Following Chib (1995) the log marginal likelihood is defined as
InP(Z\m) =InF(Z\E,m)+1Inp(Z) —InG (E\Z). We use a particle filter to evaluate
the log likelihood of the models with stochastic volatility. The log likelihood for the

model with homoscedastic shocks can be evaluated using the Kalman filter.

For the most general TVP model, the posterior density is defined as
G (2\Z) = G(C,M,G,D) where C denotes the posterior mean of the non-zeros

elements of A, M denotes the posterior mean of the variance-covariance of 7, G
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denotes the posterior mean of the variance of V, and D is the posterior mean of the
variance of i, (see Section 3.2 for a definition of T,,V, and i,). We drop the dependence

on Z, for notational simplicity.

The posterior distribution can be factored as
G(C,M,G,D) =H (C\M,G,D) xH (M\G,D) xH (G\D) xH (D)  (C-4)

Consider each term on the right-hand side of equation (C-4):

The term H (C’\M , G,D) can be expressed as
/ H(C\M.,G,D,®) x H (0\M, G, D) d® (C-5)

where @ = {®,,H,, A,,H,} denotes the state variables in the model. Note that

H (C’\M .G.D, @) is a complete conditional and can be approximated using an
additional Gibbs run that samples from the conditional densities of the states given the
posterior mean of the model parameters ie ® j\é M, G,ﬁ and then evaluates the normal
density H (C’\M , G,ﬁ, ® j) after a burn-in period. H (C‘\M , G,ﬁ) is approximated as
}Zle H (C‘ \M ) G,ﬁ, 0 j) where J denotes the number of retained Gibbs draws.

Similarly, the term H (M \G,ﬁ) is approximated via a Gibbs run that samples from the
following conditional densities: (1) M,\G,D,C;,0; (2) C\G,D,M;,®; and (3)
©;,\G,D,M;,C;. After a burn-in period H (M\G,D) R~ }ZL] H (M\G,D,C,-, 9))
where H (M\G,D,C;,®)) is the inverse Wishart density.

The term H (G\D) is approximated via a Gibbs run that cycles through the following
conditionals: (1) G;,\C;,M;,D,®; (2) C;\G;,M;,D,0®; (3) M,\C;,G;,D,0®; and (4)
®;\M,,C;,G;,D. After a burn-in period H (G\ﬁ) ~ %Zﬁle(G\CJ-,Mj,IA),@j) where

H(G,\C;,M j,ﬁ, ©;) is an inverse gamma density for each element of G.

The term H (15) is approximated via a Gibbs run that that cycles through all the
conditionals: (1) G;\C;,M;,D;,®; (2) C;\G;,M;,D;,®; 3) M,\G;,C;,D;,0; (4)
D;\M;,G;,C;,®; and (5) ®;\M;,C;,G;,D;. After a burn-in period,

H (D)~ 1Y) H(D\M;,G;,C;,®;) which is an inverse gamma density for each

element of D.
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We use 20,000 replications in these additional Gibbs runs discarding the first 15,000 as

burn-in.
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Appendix D: Time-varying FAVAR model

Our time-varying FAVAR model consists of the following equations
Xy = BE+eq (D-1)

2
Fk,t = ¢+ Z ¢1,;Fk,tfj + v
=1
e; = PpP;€i—11+E;

with F = {F', >, F’}, B denotes the factor loading matrix and the coefficients ¢,, = {

¢, 9, } follow a random walk:

(T)IJ = (T)l,t—l +n,
The covariance matrix of the innovations v, is factored as
VAR (v;) = Q= A7 H(A) (D-2)

where the time-varying matrices H, and A, are given as in the time-varying VAR model:

h, 0 0 1 0 0
H=| 0 h, 0 A=|oy, 1 0 (D-3)
0 0 hs, 031, O3y |

with the h;, evolving as geometric random walks
h’lhw == lnhl‘J_] +Vl

Following Primiceri (2005) we postulate that the non-zero and non-one elements of the

matrix A; evolve as driftless random walks
o =01 +7T (D'4)

and we assume the vector [€], 1/, T, V/]’ to be distributed as

& R0 0 0
0 00

N N (O,V), with v = Qr and G = diag (63,...0%) .

%, 0 0 S0

v 0 0 0 G|

(D-3)
Bernanke, Boivin and Eliasz (2005) show that identification of the FAVAR model given

by equations (D-1) requires putting some restrictions on the matrix of factor loadings.
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Following their example we assume that the top J x J block of B, is an identity matrix.
The model is then estimated using a Gibbs sampling algorithm with the conditional

prior and posterior distributions described below.

D.5 Prior distributions and starting values

Following Bernanke et al (2005) we centre our prior on the factors (and obtain starting
values) by using a principal components (PC) estimator applied to each X; ;. In order to
reflect the uncertainty surrounding the choice of starting values, a large prior

covariance of the states (Py/) is assumed.

Starting values for the factor loadings are also obtained from the PC estimator after
imposing the above restrictions. The priors on the diagonal elements of R are assumed
to be inverse gamma

Rii g IG(R(),V())

where Ry = 0.01 and V, = 1 denote the prior scale parameter and the prior degrees of
freedom respectively. The prior distributions for the parameters of the transition

equation are set as described for the time-varying VAR model in Section C.2.

D.6 Simulating the posterior distributions

Factors and factor loadings

This closely follows Bernanke et al (2005). Details can also be found in Kim and

Nelson (1999).

Factors

The conditional posterior distribution of the factors F; is linear and Gaussian
FT\Xi,taRME ~N (FT\TapT\T)

Fz\F;Jrl,Xi,taRn E~N (E\zH,F,H s Pz\t+1,F,+1)
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wheret =T — 1,.., 1, the vector Z holds all other FAVAR parameters. Carter and Kohn

(2004) is used to calculate the mean and variance of these distributions. For details see

Kim and Nelson (1999).
Elements of R

Following Bernanke et al (2005) R is a diagonal matrix. The diagonal elements R;; are

drawn from the following inverse gamma distribution
Rii ~ IG (Rih T + V())

where
Al A
R = €& + Ry

where €; denoting the residual X;; — F”*3, where X;; = X;, —p,X;;—1 and F,* = F, —p,F;_,
Factor loadings

The factor loadings are sampled from

B~ N (B M)

-1 -1
where B* = (Egl + RlFtF,> (25130 + lﬁ*’X;) and M* = (zo-l + RLF,F,) .

Ri;

Note By = 0 and X is an identity matrix.
Autocorrelation coefficients

The autocorrelation coefficients p, are sampled from
pi~N (p*a‘/*)

—1 —1
where p* = (Zgol + RiﬁeffletA) (Z;jol Po+ Riﬁeﬁfle,) and V* = (Z‘jol + Rlﬁeﬁ,le,,1>
with py =0and X, = 1

Elements of the time-varying VAR (transition equation)
Given an estimate of the factors, the model becomes a VAR with drifting coefficients

and covariances and we use the algorithm described in Section C.3 to sample from the

conditional posterior distributions.
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As estimation of this model is more computationally intensive, we use 10,000 draws of

the MCMC algorithm and use the last 1,000 draws for inference.
D.7 Calculation of the marginal likelihood

The log likelihood for the TVP-FAVAR models is evaluated using a particle filter while
the Kalman filter is used for the fixed-coefficient FAVAR. The posterior density for the
most general model (ie the TVP-FAVAR with stochastic volatility) is defined as

G (E\Zt) =G (ﬁ, [S,R, QF,M , G) where M denotes the posterior mean of the
variance-covariance of T;, G denotes the posterior mean of the variance of v; and

B, P, R, Or denote the posterior means of the model parameters described above. We
drop the dependence on Z, for notational simplicity. This posterior distribution can be

factored as

G(Bﬂﬁ7ﬁ7QAFaM7GA> = (D'6)
H (B\ﬁ7é7QAF7M7 G) xH (ﬁ\léuQAF7Mvé) X
H(R\Qr,M,G) xH (0r\M,G) x H (M\G) x H (G)

where (as in the case of the TVP-VAR) each density on the RHS can be written as a

‘weighted average’ across the state variables ® = {F;, ®,,H,,A, } . For example

H (B\ﬁ7ﬁ7 QAFan G) = fH (B\ﬁ?ﬁa QF7M7 G? ®> XH(G\[SvR\7 QF7M7 G)d® The

form of each density on the RHS of equation (ID-6) can be approximated using the

method in Chib (1995). That is, as in the case of the TVP-VAR model, we use

additional Gibbs iterations to approximate each of these densities and integrate over

the states. We use 10,000 iterations with a burn-in period of 7,000 iterations.
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Appendix E: Unobserved component model with stochastic volatility

Consider the UC model:

Z = Bt + \/Etet
B, = B +VoOm
Ino, = Inoc,_|+ey,var(ey) =g

In®, = In®,_|+ey,var(ey) =g

E.8 Priors and starting values

The prior for the initial value of the stochastic volatility Inc; is defined as

Incy ~ N(Inyy, 10) where y, are is the variance of Z,y — f3,, where 0 denotes the
training sample of 40 observations and [, is an initial estimate of the trend using an
HP filter. Similarly In®, ~ N(In®,, 10) where ®, = AB,,. The prior for g, and g, is
inverse gamma with prior scale parameter set equal to 0.01 and 0.0001 respectively

with degrees of freedom set equal to one.
E.9 Simulating the posterior distributions

Conditional on a value for g; and g, the Metropolis algorithm described in Jacquier

et al (2004) is used to draw o, and ®;. B, is drawn using the Carter and Kohn (2004)
algorithm. Given a draw for 6, and ®@,, g; and g, can easily be sampled from the
inverse gamma distribution. We use 10,000 draws of the MCMC algorithm and use the

last 1,000 draws for inference.
E.10 Calculating the marginal likelihood
The log likelihood function for this model is calculated using a particle filter. The

posterior density in the equation for the marginal likelihood is defined as

G (@\Zt) = G(8,,8>) where we have dropped the dependence on Z, for notational
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simplicity. This density can be factored as

G(§1,82) =H(§1\§2) x H($2)

where H (1\82) = [ H (§1\42,0) x H (®\,)d® and

H($,) = [H(%,\®) x H(0®)d® where ® = {B,,0,,®,} denotes the state variables in
the model. As described above for the TVP-VAR and the TVP-FAVAR models,
additional Gibbs runs can be used to approximate these two terms. We use 10,000

iterations in these additional Gibbs samplers and discard the first 7,000 as burn-in.
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Appendix F: Threshold and smooth transition VAR models

F.11 Prior distribution

The prior distribution of the VAR parameter vector in each regime

= (vec (Bl,g[)/ y ..o, vec (BK’ST)/,vech (.Q.gr)/>/

has the same natural conjugate normal Wishart prior distribution. The prior moments
of B; and the tightness hyperparameters around these moments have been set equal to
those used in Section C.2. The prior distribution of c¢ is the truncated normal
distribution with mean equal to the mean of Z;,_; and the standard deviation is adjusted
to deliver the appropriate acceptance rate (between 25%-40%). The distribution of ¢ is
truncated between the 0.15 and 0.85 quantile of the empirical distribution of Z;,_; to
ensure that at least 15% of the observations lie in this regime. Similar to Engemann
and Owyang (2010), the prior distribution used for 7y is the gamma distribution with

both hyperparamters equal to one.
F.12 Posterior estimation

This section briefly describes the steps of the Gibbs and Metropolis-Hasting sampling
scheme used to derive the posterior distribution of the entire parameter vector. For
more details please consult the studies of Chen and Lee (1995) and Lopes and Salazar

(2006)

STEP 1 For ¢/~!and y~' §, is constructed using (15) for TVAR or (16) for ST-VAR
STEP 2 Given §, from STEP 1 we derive the OLS version of B (Bs)
STEP 3 Bgt is combined with the prior moments of 35 to construct its posterior

conditional moments, which are used to draw from the normal Wishart distribution

B%)
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STEP 4 Given [3{5;[, ¢/ and y/ are generated by
¢ = ¢! + Gclcy

Yj = 'Y’;1 + Gylty,

L(z:Bl e ) p (B ) p () p(¥)
L(Z,;Bé;'cf’l,vf”)p(ﬁ;é:')P(c‘f—l)p(“{f")
generated by the uniform over the unit interval then the draw Bé ¢/ and ¥ is

STEP 5 If the ratio is greater than a random variable

accepted — set ¢/~! = ¢/ and ¥~! = ¥/ and proceed to STEP 1. Otherwise the draw is

discarded — ¢/~! = ¢/~! and y~! = y/~! and proceed to STEP 1.

The values of 6. and ¢, have been calibrated to deliver an appropriate acceptance rate.

F.13 Calculating the marginal likelihood

The log likelihood of these models is available in analytical form. The posterior

distribution is defined as G (@\Zt) = G(B,Q,¢,9). This density can be factored as

G(B,Q.¢,9) = G(B\Q.6,9) x G(Q\e,9) x G(\Y) x G(\}) (F-1)

The first two terms on the RHS of equation (F-1) can be approximated via extra Gibbs
runs while the method in Chib and Jeliazkov (2001) is used to approximate the

unknown densities in the last two terms.
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Appendix G: Rolling and recursive VARs

We use the natural conjugate prior for the VAR described in equation (B-4) with T = 10
and ¢ = 1/10000. Details on the posterior moments can be found in Banbura,
Giannone and Reichlin (2010). An analytical expression for the marginal likelihood

can be found in Carriero, Clark and Marcellino (2011).
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Appendix H: Data for the FAVAR models

The data set used to estimate the FAVAR models is listed in Table G. Note that when
estimating the model to forecast inflation, we include GDP growth and the short-term
interest rate in X;; (see equation (D-1)) along with the variables in Table G. When
estimating the model to forecast GDP growth we include inflation and the interest rate
in X;; along with the variables in Table G. Similarly, GDP growth and inflation are

added to the panel when estimating the model to forecast interest rates.
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Table G: Data used to estimate FAVAR model. ONS denotes Office for National
Statistics. IFS is International Financial Statistics. GFD is Global Financial Data

Variable no Variable Name Source Transformation
1 General government: Final consumption expenditure ONS Log Difference
2 ESA9S output index: F: Construction: ONS Log Difference
3 Total exports ONS Log Difference
4 Total imports ONS Log Difference
5 Gross Fixed Capital Formation ONS Log Difference
6 IOP: Manufacturing ONS Log Difference
7 SA95 output index: Transport storage & communication ONS Log Difference
8 SA95 output index: Total ONS Log Difference
9 ESA95 output index: Distribution, hotels & catering; repairs ONS Log Difference
10 IOP: All production industries ONS Log Difference
11 IOP: Electricity, gas and water supply ONS Log Difference
12 IOP: Manuf of food, drink & tobacco ONS Log Difference
13 IOP: Manuf coke/petroleum prod/nuclear fuels ONS Log Difference
14 IOP: Manuf of chemicals & man-made fibres ONS Log Difference
15 Consumption ONS Log Difference
16 Trade balance ONS None
17 RPI total Food ONS Log Difference
18 RPI total non-food ONS Log Difference
19 RPI total all items other than seasonal food ONS Log Difference
20 GDP Deflator ONS Log Difference
21 Wages ONS Log Difference
22 Import prices IFS Log Difference
23 Export prices IFS Log Difference
24 M4 deposits BOE Log Difference
25 M4 lending BOE Log Difference
26 Real Nationwide house prices Nationwide | Log Difference
27 Dividend yield GFD None
28 PE ratio GFD None
29 FTSE All-Share index GFD Log Difference
30 Pounds US dollar rate GFD Log Difference
31 Pounds euro rate GFD Log Difference
32 Pounds yen rate GFD Log Difference
33 NEER GFD Log Difference
34 Pounds Canadian dollar rate GFD Log Difference
35 Pounds Australian dollar rate GFD Log Difference
36 Corporate bond yield GFD None
37 Unemployment Rate GFD None
38 5-year govt bond yield GFD None
39 10-year govt bond yield GFD None
40 20-year govt bond yield GFD None
41 Commodity price index GFD Log Difference
42 Brent oil price GFD Log Difference
43 Industrial production index GFD Log Difference
44 United Kingdom composite leading indicators GFD Log Difference
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