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Abstract

Evidence from a large and growing empirical literature strongly suggests that there have been changes in
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parameters can lead to large and statistically significant gains in forecast accuracy.
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Summary

In recent years, a number of papers have applied econometric models that allow for

changes in model parameters. In general, this literature has examined and investigated

how the properties of key macroeconomic variables have changed over the last three

decades. So the underlying econometric models in these studies have therefore been

used in a descriptive role.

The aim of this paper, instead, is to consider if these sophisticated models can offer

gains in a forecasting context - specifically, GDP growth, CPI inflation and the

short-term interest rate relative to simpler econometric models that assume fixed

parameters. We consider 24 forecasting models that differ along two dimensions. First,

they model the time-variation in parameters in different ways and allow for either

gradual or abrupt shifts. Second, some of the models incorporate more economic

information than others and include a larger number of explanatory variables in an

efficient manner while still allowing for time-varying parameters.

We estimate these models at every quarter from 1976 Q1 to 2007 Q4. At each point in

time we use the estimates of each model to forecast GDP, CPI inflation and the

short-term interest rate. We then construct the average squared deviation of these

forecasts from the observed value relative to forecasts from a simple benchmark model.

A comparison of this statistic across the 24 forecasting models indicates that allowing

for time-varying parameters can lead to gains in forecasting. In particular, models that

incorporate a gradual change in parameters and also include a large set of explanatory

variables do particularly well as far as the inflation forecast is concerned recording

gains (over the benchmark) which are significant from a statistical point of view.

Models that include this extra information also appear to be useful in forecasting

interest rates. Models that incorporate more abrupt changes in parameters can do well

when forecasting GDP growth. This feature also appears to surface during the financial

crisis of 2008-09 when this type of parameter variation proves helpful in predicting the

large contraction in GDP growth.
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1 Introduction

A large and growing literature has proposed and applied a number of empirical models

that incorporate the possibility of structural shifts in the model parameters. The series

of papers by Tom Sargent and co-authors on the evolving dynamics of US inflation is a

often cited example of this literature. In particular, Cogley and Sargent (2002), Cogley

and Sargent (2005) and Cogley, Primiceri and Sargent (2008) use time-varying

parameter VARs (TVP-VAR) to explore the possibility of shifts in inflation dynamics,

with Benati (2007) applying this methodology to model the temporal shifts in UK

macroeconomic dynamics. In contrast, Sims and Zha (2006), model changing US

macroeconomic dynamics using a regime-switching VAR (see Groen and Mumtaz

(2008) for an application to the United Kingdom). Balke (2000) highlights potential

non-linearities in output and inflation dynamics and use threshold VAR (TVAR)

models to explore non-linear dynamics in output and inflation. Recent papers have

estimated time-varying factor augmented VAR (TVP-FAVAR) models in order to

incorporate more information into the empirical model. For example, Baumeister, Liu

and Mumtaz (2010) argue that incorporating a large information set can be important

when modelling changes in the monetary transmission mechanism and use a

TVP-FAVAR to estimate the evolving response to US monetary policy shocks.

Most of this literature has focused on describing the evolution in macroeconomic

dynamics. In contrast, research on the forecasting ability of these models has been

more limited in number and scope. D’Agostino, Gambetti and Giannone (2011) focus

on TVP-VARs and show that they provide more accurate forecasts of US inflation and

unemployment when compared to fixed-coefficient VARs. In a recent contribution,

Eickmeier, Lemke and Marcellino (2011) present a comparison of the forecasting

performance of the TVP-FAVAR with its fixed-coefficient counterpart and AR models

with time-varying parameters for US data over the 1995-2007 period. The authors

show that there are some gains (in terms of forecasting performance) from allowing

time-variation in model parameters and exploiting a large information set.

The aim of this paper is to extend the forecast comparison exercise in D’Agostino et al
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(2011) and Eickmeier et al (2011) along two dimensions. First, our paper compares the

forecast performance of a much wider range of models with time-varying parameters.

In particular, we compare the forecasting performance of (a range of) regime-switching

models, TVP-VARs, TVP-FAVARs, TVARs, smooth transition VARs (ST-VARs), the

unobserved component model with stochastic volatility proposed by Stock and Watson

(2007), rolling VARs and recursive VARs. The forecast comparison is carried out

recursively over the period 1976 Q1 to 2007 Q4 and thus covers a longer period than

Eickmeier et al (2011). Second, while previous papers have largely focused on the

United States, we work with UK data and try to establish of these time-varying

parameter models are useful for forecasting UK inflation, GDP growth and the

short-term interest rate. This is a policy relevant question as the United Kingdom has

experienced large changes in the dynamics of key macro variables over the last three

decades. In addition, the recent financial crisis has been associated with large

movements in inflation and output growth again highlighting the possibility of

structural change. Note also that our analysis has a different focus than the analysis in

Eklund, Kapetanios and Price (2010) and Clark and McCracken (2009). While these

papers largely focus on forecasting performance under structural change in a Monte

Carlo setting our exercise is a direct application to UK data using time-varying

parameter models that are currently popular in empirical work.1

The forecast comparison exercise brings out the following main results:

• On average, the TVP-VAR model delivers the most accurate forecasts for GDP

growth at the one-year forecast horizon, with a root mean squared error (RMSE) 6%

lower than an AR(1) model. The TVAR model also performs well, especially over

the post-1992 period.

• Models with time-varying parameters lead to a substantial improvement in inflation

forecasts. At the one-year horizon, the TVP-FAVAR model has an average RMSE

23% lower than an AR(1) model. A similar forecasting performance is delivered by

1Faust and Wright (2011) compare the performance of a large number of models in forecasting US inflation. Their focus,
however, is not exclusively on models with time-varying parameters.
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the TVP-VAR model and Stock and Watson’s unobserved component model, where

the latter delivers the most accurate forecasts over the post-1992 period.

• Over the recent financial crisis, models that allow for regime-switching and

non-linear dynamics appear to be more successful in matching the profile of inflation

and GDP growth than specifications that allow for parameter drift.

The paper is organised as follow. Section 2 provides details on the data used in this

study and describes the real time out of sample forecasting exercise. Section 3

describes the main forecasting models used in this study. Section 4 describes the main

results in detail.

2 Data and forecasting methodology

2.1 Data

Our main data set consists of quarterly annualised real GDP growth, quarterly

annualised inflation and the three-month Treasury bill rate. Quarterly data on these

variables is available from 1955 Q1 to 2010 Q4.

The GDP growth series is constructed using real-time data on GDP obtained from the

Office for National Statistics. Vintages of GDP data covering our sample period are

available 1976 Q1 onwards and these are used in our forecasting exercise as described

below. GDP growth is defined as 400 times the log difference of GDP.

The inflation series is based on the seasonally adjusted harmonised index of consumer

prices spliced with the retail prices index excluding mortgage payments. This data is

obtained from the Bank of England database. Inflation is calculated as 400 times the

log difference of this price index. The three-month Treasury bill rate is obtained from

Global Financial Data.
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Root mean squared error

In particular, we use root mean squared error (RMSE) calculated as

RMSE =

√√√√ T+h

∑
t=T+1

(
Ẑt−Zt

)2

h
(1)

where T +1,T +2, ..T +h denotes the forecast horizon, Ẑt denotes the forecast, while

Zt denotes actual data. For GDP growth, the forecast error Ẑt−Zt is calculated using

the latest available vintage. We estimate the RMSE for h = 1,4,8 and 12 quarters.

In order to compare the performance of the different forecasting models we use the

RMSE of each model relative to a benchmark model: an AR(1) regression estimated

via OLS recursively over each subsample.

Diebold-Mariano statistic

To test formally whether the predictive accuracy delivered by the non-linear models

considered in this study is superior to that obtained using the AR(1) regression

estimated via OLS recursively over each subsample, we use the statistic developed by

Diebold and Mariano (1995).2 The accuracy of each forecast is measured by using the

squared error loss function – L
(
Ẑi

t ,Zt
)
=
(
Ẑi

t −Zt
)2

where t = T +1, ...,T +R and R is

the length of the forecast evaluation sample. Under the null hypothesis the expected

forecast loss of using one model instead of the other is the same

Ho : E
[
L
(
Ẑi

t ,Zt
)]

= E
[
L
(
ẐAR

t ,Zt
)]

(2)

This can be tested as a t-statistic, namely∣∣∣∣∣√R
1
R ∑

T+R
t=T+1 dt

σ̂d

∣∣∣∣∣> 1.96 (3)

where dt =
(
Ẑi

t −Zt
)2−

(
ẐiAR

t −Zt
)2

and σ̂
2
d is the heteroskedasticity and

autocorrelation consistent variance estimator developed by Newey and West (1987).

2Note the Diebold-Mariano (DM) statistic is calculated for the entire sample, not for each point in time as the RMSE is
derived. Furthermore, the DM statistic will coincide with the RMSE only if the forecasting horizon equals one. Finally,
there could be cases when the DM test is unable to distinguish between models even when there are quite large reductions
in RMSE.
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The information that the h-step ahead forecast error follows a moving average process

of order h−1 is used to decide about the bandwidth of the kernel.3

Trace statistic

In addition we calculate the trace of the forecast error covariance matrix – Ω – to

assess the multivariate performance of the competing models. Consider the singular

valued decomposition of Ω =V ΛV ′ where V is the matrix of eigenvectors and Λ is the

diagonal matrix with eigenvalues in descending order. The eigenvalues are the

variances of the principal components and the trace of Ω equals the sum of their

eigenvalues. Based on these observations Adolfson, Linde and Villani (2007) argue

that the trace will, to a large extent, be determined by the forecasting performance of

the least predictable dimensions (largest eigenvalues). It should be mentioned that this

statistic has its limitations. For instance, Clements and Hendry (1995) point out that

the model ranking based on this statistic is affected by linear transformations of the

forecasting variables. However, this is not the case in our exercise since all variables

are expressed in percentage terms.

3 Forecasting models

In this section we provide a description of the forecasting models used in this study.

Note that the forecasts that the Monetary Policy Committee publishes in the Inflation

Report are their best collective judgement of future developments given particular

interest rate paths and are not based on any particular formal model. Naturally, they are

informed by the insights from many different models, including models that recognise

the existence of structural change such as those examined here.

Following D’Agostino et al (2011) (and the convention in a large number of papers

using VARs with time-varying parameters – see for example Cogley and Sargent

3Given that these models are non-linear and their parameters are functions of time (not just a sequence that converges to a
fixed point) and that we have calculated the DM statistic for the entire sample (not just for each data release, T → ∞), we
can perhaps make the assumption that these models are non-nested and standard asymptotic theory can be applied. The
same is true for the AR(1).
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(2002), Primiceri (2005) and Cogley and Sargent (2005)) we use a lag length of two in

all models considered below.

3.1 Regime-switching VAR

To account for the possibility of structural shifts, we model inflation, output and

interest rate dynamics using a regime-switching VAR of the following form

Zt = cSt +
K

∑
j=1

BSt Zt− j +Ω
1/2
Ht

εt (4)

where Zt is a T ×3 data matrix that contains GDP growth, inflation and the interest

rate. BS and Ωh are regime-dependent autoregressive coefficients and reduced-form

variance-covariance matrices. The VAR model allows for M breaks at unknown dates,

as in Chib (1998), these are modelled via the latent state variable St for the VAR

coefficients and Ht for the error covariance matrix. In our most general

regime-switching model, the state variables S and H are assumed to evolve

independently with their transition governed by a first-order Markov chains with M+1

regimes with restricted transition probabilities pi j = p(St = j|St−1 = i) and

qi j = p(Ht = j|Ht−1 = i). The transition probability matrices are defined as

pi j,qi j > 0 if i = j (5)

pi j,qi j > 0 if j = i+1

pMM,qMM = 1

pi j,qi j = 0 otherwise.

For example, if M = 4 the transition matrices are defined as

P̃ =


p11 0 0 0

1− p11 p22 0 0

0 1− p22 p33 0

0 0 1− p33 1

 , Q̃ =


q11 0 0 0

1−q11 q22 0 0

0 1−q22 q33 0

0 0 1−q33 1


Equations (4) and (5) define a Markov-switching VAR with non-recurrent states where

transitions are allowed in a sequential manner. For example, to move from regime 1 to

regime 3, the process has to visit regime 2. Similarly, transitions to past regimes are

not allowed. However, this structure is not necessarily more restrictive than a standard

Markov-switching model, but simply implies that any new regimes are given a new
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label, rather than being explicitly linked to past states (as in a standard

Markov-switching model). This formulation implies that the regimes are identified by

assumption and no ‘label switching’ problem exists when implementing the Gibbs

sampler. This feature offers a clear computational advantage (relative to

regime-switching VAR with unrestricted transition probabilities) by removing the need

for regime normalisation which can be computationally challenging as the number of

regimes become larger.

We estimate three versions of this regime-switching model: (1) The general switching

model as set out in equation (4) which allows for independent breaks in the VAR

coefficients and error covariance. (2) A version of the regime-switching VAR where

the breaks in VAR coefficients and the covariance matrix are restricted to occur jointly

and (3) A version of the regime-switching VAR where only breaks in the VAR

coefficients are allowed. Specification (2) is estimated to gauge if allowing for

different timing in variance and coefficient breaks offers any advantage in terms of

forecasting performance. Specification (3) which does not include volatility breaks is

included in order to shed light on the role played by heteroscedasticity. In each case,

we allow for up to three breaks or four regimes.

Versions of this regime-switching model have been used in a number of recent studies

to describe the changing dynamics of key macroeconomic time series. For example

Sims and Zha (2006) argue that a model that incorporates regime-switching dynamics

provides a good description of the evolution of monetary policy and inflation dynamics

in the United States. Groen and Mumtaz (2008) provide a similar analysis for the

United Kingdom and show that a regime-switching VAR is useful for describing the

change in inflation persistence. It may also be argued that allowing for discrete shifts in

coefficients and error variances is especially appropriate given the current crisis and its

associated impact on macroeconomic variables.

The models are estimated using a Gibbs sampling algorithm. The prior distributions

and conditional posteriors are described in the appendix. Note that we employ a

normal inverse Wishart prior on the VAR parameters in each regime. However, as

described in the appendix the tightness parameters are set to large values rendering the

Working Paper No. ? January 2012 12



prior distributions non-informative.

3.2 Time-varying VAR

In a recent paper, D’Agostino et al (2011) show that a VAR with time-varying

parameters and stochastic volatility performs well in forecasting US macroeconomic

data. In addition, a voluminous literature has used the time-varying VAR model to

investigate the possibility of a temporal shift in UK and US inflation dynamics.

Prominent examples of papers that employ this model for the United States include

Cogley and Sargent (2002), Cogley and Sargent (2005) and Cogley et al (2008). Benati

(2007) and Mumtaz and Sunder-Plassmann (2010) use the time-vaying VAR model to

capture the time-varying dynamics of UK macroeconomic and financial time series.

Relative to the regime-switching model, the time-varying VAR incorporates a more

flexible specification for time-varying parameters. In particular, it allows independent

time-variation in each VAR equation.

We use a general version of this model as a forecasting model for UK GDP growth,

inflation and interest rates. In particular we employ the following specification:

Zt = ct +
K

∑
j=1

BtZt− j +Ω
1/2
t εt (6)

where the VAR coefficients Φt = {ct ,Bt} evolve as random walks

Φt = Φt−1 +ηt

As in Cogley and Sargent (2005), the covariance matrix of the innovations vt is

factored as

VAR(vt)≡Ωt = A−1
t Ht(A−1

t )′. (7)

The time-varying matrices Ht and At are defined as:

Ht ≡


h1,t 0 0

0 h2,t 0

0 0 h3,t

 At ≡


1 0 0

α21,t 1 0

α31,t α32,t 1

 (8)

with the hi,t evolving as geometric random walks,
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lnhi,t = lnhi,t−1 + ν̃t .

Following Primiceri (2005), we postulate the non-zero and non-one elements of the

matrix At to evolve as driftless random walks,

αt = αt−1 + τt , (9)

In our first specification we consider a version of this TVP-VAR estimated recently by

Cogley et al (2008) and Baumeister and Benati (2010). These authors generalise the

specification adopted in Cogley and Sargent (2005) by allowing for stochastic volatility

in ηt . In particular, we model var(ηt) = Qt as

Qt = Ã−1H̃t
(
Ã−1)′ (10)

where Ã is a lower triangular matrix, while H̃t = diag
(
h̃1t .....h̃Mt

)
with

M = N× (N×L+1) and h̃ jt evolving as

ln h̃ jt = ln h̃ jt−1 + ũt (11)

As discussed in Baumeister and Benati (2010), one advantage of this extended

specification is that it allows for the possibility that the degree of time-variation varies

over the sample. For example, it accounts for the possibility that the VAR coefficients

change faster during crisis periods while the degree of parameter drift is smaller over

tranquil periods. We consider two further restricted specifications. First, following

D’Agostino et al (2011), we estimate a time-varying VAR with a constant degree of

parameter drift – ie Qt = Q. Second, to explore the role played by heteroscedasticity,

we estimate a TVP-VAR with Ωt = Ω as in Cogley and Sargent (2002).

The models are estimated using a Gibbs sampling algorithm. The priors distributions

and conditional posteriors are described in the appendix. We point out two aspects:

first, the prior for Q (and for H̃0 in the specification which allows for a time-varying Q)

is set using a pre-sample of T0 = 40 quarters. In particular, let QOLS denote the OLS

estimate of the coefficient covariance matrix using the training sample. When Q is

Working Paper No. ? January 2012 14



time-invariant, its prior distribution is assumed to be inverse Wishart with a scale

matrix given by Q̄ = QOLS×T0× k where the scalar k = 3.5e−04 as in Cogley and

Sargent (2005). The prior degrees of freedom are set equal to T0 = 40 the length of the

training sample. When Q is time-varying, a prior distribution is required for the initial

values of H̃t . The mean of this log normal prior is set as the log of

diag(AOLSQOLSA′OLS)×T0× k where AOLS is the inverse of the Choleski decomposition

of QOLS. The variance of the prior distribution is set to 1. On a log scale this represents

an agnostic prior about the initial value of H̃t .

3.3 Time-varying factor augmented VAR

Recent empirical work on the evolving monetary transmission mechanism has

employed time-varying factor augmented VAR (TVP-FAVAR) models as a way of

incorporating additional information into the empirical specification (see for example

Baumeister et al (2010) and Eickmeier et al (2011) and the references therein). As

shown in Eickmeier et al (2011), these models therefore offer a convenient way to

combine a large information set and time-varying dynamics. As shown by Eickmeier

et al (2011) for the United States, the time-varying FAVAR delivers superior

forecasting performance than its fixed-coefficient counterpart and time-varying models

that do not include information from a large data set. Following Eickmeier et al (2011)

we estimate the following TVP-FAVAR model

Xt = βFt + eit (12)

Ft = ct +
K

∑
j=1

BtFt− j +Ω
1/2
t εt

where Xt = [xit ,zt ]. xit is a T ×M matrix of macroeconomic and financial variables and

zt is the variable we are interested in forecasting. That is zt is either GDP growth,

inflation or the three-month Treasury bill rate. The matrix Ft contains the K latent

factors that summarise the information in the panel xit and zt . That is zt = [ f1t , .. fKt ,zt ] .

β denotes the factor-loading matrix, while eit represents the idiosyncratic component.

We allow for first-order serial correlation in eit with eit = ρieit−1 + vit . More details on

the observation equation can be found in Baumeister et al (2010). The dynamics of Ft

are described by a time-varying VAR model with stochastic volatility. The coefficients

of this transition equation evolve as random walks (the shock on the random walk has a
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fixed variance). The variance of the shocks is specified as in equation (7). In our

application we fix the number of latent factors to three for computational reasons. In

particular, with a larger number of endogeneous variables it becomes increasingly

difficult to keep the transition equation of the model stable at each point in time. Given

that the model needs to be estimated recursively (over 100 recursive data samples)

computational efficiency is vital in our exercise.

The model is estimated using a Gibbs sampling algorithm. This algorithm is an

extended version of the sampler used for the time-varying VAR and is described in

Appendix D. Note that the priors for the hyperparameters of the transition equation are

set as described in the previous section. Appendix H describes the data set xit used for

the forecasting exercise. In short, xit contains 43 variables that represent data on real

activity, inflation, money supply, interest rates and exchange rates. This data set is

chosen as it is consistently available over the sample period used in our forecasting

exercise.

We also consider two restricted versions of the model in (12). First, we fix Ωt = Ω and

only allow time-variation in the coefficients of the transition equation. Second, we

estimate a fixed-coefficient FAVAR. These restricted models are estimated to gauge the

role played by time-varying parameters (in addition to the impact of the larger

information set) in driving any change in forecasting performance.

3.4 Unobserved component model with stochastic volatility

In a recent contribution Stock and Watson (2007) show that a univariate unobserved

component (UC) model with stochastic volatility performs well in forecasting US

inflation. Following Stock and Watson (2007) we consider this model as a possible

alternative specification to forecast UK data. The UC model with stochastic volatility
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is given by:

Z̃t = βt +
√

σtεt

βt = βt−1 +
√

ϖtvt

lnσt = lnσt−1 + e1t ,var (e1t) = g1

lnϖt = lnϖt−1 + e2t ,var (e2t) = g2

where Z̃t contains data on GDP growth, inflation or the three-month Treasury bill yield.

The model is estimated using a MCMC algorithm which is described in Appendix E.

3.5 Threshold and smooth transition VAR models

Threshold and smooth transition VAR models allow for different VAR parameters in

different regimes. The switching mechanism in this case is intuitive and simple,

making these models very attractive and, consequently, popular. In addition (unlike

regime-switching and time-varying parameter models), the time-variation in the

parameters is linked explicitly to a threshold variable. In other words, parameters are

allowed to be different in expansions and recessions, periods of high or low inflation

and periods of high and low interest rates. While regime-switching and time-varying

models can account for this possibility, the parameter change in these models is

governed by a more general process.

These models can be expressed as follows:

Zt = cS̃t
+

K

∑
j=1

B j,S̃t
+Ω

1/2
S̃t

εt (13)

However, the state variable S̃t is constructed differently now. In the threshold case S̃t is

a discrete variable that takes values 1 or 0 according to the following rule

S̃t =



1 if Zi,t−d ≤ c1

1 if c1 < Zi,t−d ≤ c2
...

1 if cM−2 < Zi,t−d ≤ cM−1

0 otherwise

(14)

where Zi,t is the variable i of the Z vector, M is the number of regimes and

c = (c1, ...,cM−1)
′ is the vector of threshold values. In our exercise M has been set
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equal to two and d equal to one, implying that

S̃t =

 1 if Zi,t−1 ≤ c

0 otherwise
(15)

In the smooth transition case S̃t is a continuous variable given by

S̃t =

 1
1+exp(−γ(Zi,t−1−c))

1− 1
1+exp(−γ(Zi,t−1−c))

(16)

If we assume conjugate priors for the VAR parameters then conditional on γ and c the

posterior distribution of the VAR coefficient vector is the conditional normal Wishart

distribution. Unfortunately, the posterior distribution of γ and c conditional the VAR

parameter vector is unknown, meaning that we have to employ both the Gibbs and

Metropolis-Hasting samplers to derive the full posterior distribution of the entire

estimated parameter vector (Chen and Lee (1995), Chen (1998) and Lopes and Salazar

(2006)).

3.6 Rolling and recursive VAR model

Our final two forecasting models are based on the following VAR

Zt = c+
K

∑
j=1

BZt− j +Ω
1/2

εt (17)

where Zt is a T ×3 data matrix that contains GDP growth, inflation and the interest

rate. The recursive VAR is estimated recursively starting in 1976 Q1 until the end of

the sample period. The rolling VAR model uses a ten-year rolling window to estimate

the model parameters. From an applied point of view, the main virtue of these models

is the fact that they are simple to estimate. A finding that these models forecast well

relative to the more sophisticated alternatives would therefore have practical

importance.

3.7 Bayesian model averaging

We also consider if the average forecast from our 24 forecasting models can improve

upon the individual forecasts presented above. In particular, we combine the forecasts
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using Bayesian model averaging (BMA):

Ẑt,BMA =
24

∑
m=1

Ẑt,mP(Zt\m) (18)

where Ẑt,BMA denotes the BMA forecast at time t, Ẑt,m denotes the forecast from model

m and P(Zt\m) is the marginal likelihood.

Calculation of the marginal likelihood in equation (18) is the key task when estimating

Ẑt,BMA. Following Chib (1995) we consider the following representation for the log

marginal likelihood:

lnP(Zt\m) = lnF(Zt\Ξ̂,m)+ ln p
(
Ξ̂
)
− lnG

(
Ξ̂\Zt

)
(19)

where lnF(Zt\Ξ,m) is the log likelihood, ln p
(
Ξ̂
)

is the log prior density and

lnG
(
Ξ̂\Zt

)
is the log posterior density with all three terms evaluated at the posterior

mean for the model parameters Ξ̂. The prior density ln p
(
Ξ̂
)

is easy to evaluate.

Similarly, the log likelihood of the models we consider can be evaluated either directly

or via non-linear filters. The final term lnG
(
Ξ̂\Zt

)
requires more work. Following

Chib (1995) and Chib and Jeliazkov (2001) we proceed by factorising lnG
(
Ξ̂\Zt

)
into

conditional and marginal densities of various parameter blocks and using additional

and Gibbs and Metropolis runs to approximate these densities. Details are provided in

the appendix.

In Table B we present the estimated log marginal likelihoods (calculated over the full

estimation sample) for the forecasting models. The TVP-FAVAR model with

homoscedastic shocks has the largest marginal likelihood followed by the TVP-FAVAR

model that allows for time-varyng coefficients and heteroscedastic shocks. Within the

TVP-VAR models, the homoscedasic version performs the best in terms of the

marginal likelihood with little support for the generalised TVP-VAR that allows for a

time-varying Q matrix. It is also interesting to note that the threshold and STAR

models fit the data better than the regime-switching models implying that the type of

non-linear dynamics built into these models are important for UK data. Finally, the

rolling and recursive VARs fit the data well with a marginal likelihood substantially

higher than the time-varying VARs. This suggests that for our data set this simple form

Working Paper No. ? January 2012 19



of parameter variation inherent in these models is preferred to stochastic parameter

drift.

4 Results

The left-hand side of Tables C to E present the estimated RMSE for each model at the

one, four, eight and twelve quarter horizons. The colours indicate how better (green) or

worse (blue) these different forecasting models do compared to an AR(1) model. The

right-hand side offers an alternative evaluation of the forecasting performance in terms

of the Diebold and Mariano (1995) test. As for the RMSE, green indicates that these

models outperform the AR(1), blue the opposite and white that these models’ forecasts

are statistically indistinguishable from each other. We evaluate the forecast

performance over the full sample, 1976 Q1 to 2007 Q4 and over the period 1993 Q1 to

2007 Q4. Results for this latter subsample are presented separately as recent studies

have highlighted a decline in predictability over the great moderation period (see for

example Benati and Surico (2008)). It is, therefore, interesting to check if the

forecasting models described above can outperform the AR(1) model over this

subsample. The final table presents a multivariate measure of forecast accuracy,

namely the trace of the forecast error covariance matrix.

4.1 Overall forecast performance

4.1.1 GDP growth

Consider the RMSE for GDP growth. Over the full sample, 1976-2007, the TVP-VAR

model outperforms the other forecasting models at all forecasting horizons. The largest

reduction in RMSE relative to the AR(1) model occurs at the one and four-quarter

forecast horizon with the the TVP-VAR model’s performance close to the AR model at

longer horizons. However the DM statistic is not able to distinguish between the

forecasting performance of an AR(1) model and that of a TVP-VAR (standard) (and

hence white cells on the right-hand side of Table C). Note also that allowing for

heteroscedastic shocks in the TVP model improves forecasting performance – the

homoscedastic TVP-VAR has a larger RMSE at all forecast horizons. The TVAR and
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ST-VAR model with inflation as the threshold variable also performs well with a

relative RMSE close to the TVP-VAR at the one and four-quarter horizons. In addition,

the UC model performs well at the one-quarter horizon. Note that this is the only

model which shows a statistically significant improvement over the AR(1) benchmark

according to the Diebold and Mariano (1995) test.

Over the great moderation period, the TVP-VAR model is the best-performing model at

the four-quarter forecast horizon according to a RMSE criterion. However, the TVAR

(with inflation as the threshold variable) outperforms the TVP-VAR at one-quarter

horizon, while the FAVAR model delivers the most accurate GDP forecasts at the eight

and twelve-quarter horizons, albeit with a forecast accuracy close the the AR(1) model.

Chart 1 explores the evolution of the RMSE of these models over the forecasting

period. The chart plots the smoothed relative RMSE for the TVP-VAR, TVAR and

ST-VAR models at the four-quarter horizon over the forecasting sample. In the

pre-2000 period, the performance of three models is quite similar. The performance of

all three models deteriorates after 2000. Note, however, that this deterioration is largest

for the TVP-VAR and smallest for the TVAR model.

4.1.2 Inflation

At the one-quarter forecast horizon, the TVP-VAR model, the UC model and the

TVP-FAVAR model deliver, on average, the most accurate forecasts for inflation. These

models have a RMSE 12% to 15% lower than the AR(1) model. This improvement

over the AR(1) benchmark is starker at the four-quarter horizon. At the four-quarter

horizon, the TVP-FAVAR model has the lowest relative RMSE on average over the full

forecast sample – an improvement of 23% over the AR model. The TVP-FAVAR with

homoscedastic shocks delivers a very similar result to its heteroscedastic counterpart.

Note, however, that the inflation forecasts from the fixed-coefficient FAVAR model are

substantially less accurate. These results suggest that the extra information included in

the factor model and the presence of time-varying coefficients leads to an improvement

in the accuracy of inflation forecasts. At the four-quarter horizon, the BMA forecast

also does well with a relative RMSE close to the TVP-FAVAR models.
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It is also worth noting that the Diebold and Mariano (1995) test indicates the

TVP-FAVAR models are the only specifications (at the four-quarter horizon and over

the full sample) with a significant improvement in forecast performance relative to the

benchmark model. The TVP-FAVAR models are the best performers at the eight and

the twelve-quarter horizon.

Over the great moderation period, Stock and Watson’s unobserved component model

leads to the most accurate inflation forecasts at the one, four and eight-quarter horizon.

For example, at the four-quarter horizon, this model leads to an average RMSE which

is 54% lower than the AR(1) benchmark. Over this subsample a number of other

forecasting models also stand out. For example, at the one-quarter horizon, the three

regime-switching VAR (with time-invariant covariance) and the rolling VAR model

have the lowest RMSE after the UC model. At the four-quarter horizon, the

TVP-FAVAR, the TVP-VAR and the BMA procedure also deliver forecasts almost as

accurate as the UC model. The Diebold and Mariano (1995) test provides strong

evidence that over this subsample these forecasting models provide significantly more

accurate forecasts than the benchmark.

In Chart 2 we examine the evolution of the relative RMSE (at the four-quarter horizon)

of the best-performing inflation forecasting models. It is interesting to note that there is

a distinct change in relative RMSEs after the early 1990s, with the inflation-targeting

period characterised by a substantially improved performance by the four time-varying

parameter models relative to the benchmark. Note that several studies have

documented a change in UK inflation dynamics at this juncture (see for example

Benati (2007)). Our results suggest that models with evolving parameters were able to

adapt to this change better than recursively estimated fixed-coefficient models. During

the pre-1990 period, the TVP-FAVAR model generally has the lowest relative RMSE,

especially during the late 1970s and the early 1980s when some of the other

forecasting models in Chart 2 appeared to be inaccurate relative to the benchmark.

Overall, our results for inflation point to the role played by time-varying parameters in

delivering accurate inflation forecasts.
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4.1.3 Short-term interest rates

Stock and Watson’s unobserved component model has the lowest relative RMSE (on

average over the period 1976-2007) at the one and four-quarter horizon in forecasting

the short-term interest rate. The FAVAR model also performs well at the four-quarter

horizon. At longer forecast horizons, the TVAR model (with inflation as the threshold

variable) produces the lowest relative RMSE on average. Note that when considering

the entire forecast period, the gains from these models relative to the benchmark are

modest.

In contrast, when considering the great moderation period the difference in the

performance of some of the forecasting models and the AR(1) benchmark are larger.

At the one and four-quarter horizons, the TVP-VAR model produces the most accurate

interest rate forecasts leading to a 20% reduction in RMSE relative to the AR(1) model

(with a significant Diebold and Mariano (1995) test statistic). The TVAR model is the

best-performing model at longer horizons over this period.

4.2 Model-specific results

In this subsection, we consider forecasting performance across different specifications

of the estimated models. Consider, first, the regime-switching models. It is

immediately clear that allowing for independent regime shifts in the VAR coefficients

and error covariance matrix, generally leads to a deterioration in forecasting accuracy

(as measured by the trace of the forecast error covariance matrix). In fact, within the

estimated regime-switching models, the best forecasting performance (ie lowest trace)

appears to be delivered by the specification that imposes a common regime variable for

the VAR coefficients and the covariance matrix or only allows the coefficients to

switch.

From a forecast accuracy point of view, the general TVP-VAR proposed in Cogley et al

(2008) and Baumeister and Benati (2010) (that allows for a time-varying Q matrix)

displays the least favourable performance within the TVP-VARs considered in this

study. The best performance on the basis of the trace of the forecast error covariance
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matrix and over all forecast horizons is delivered by the standard TVP-VAR that allows

for stochastic volatility and the homoscedastic TVP-VAR.

According to the trace criteria, the TVP-FAVAR with homoscedastic shocks delivers

the best forecast performance (within the FAVAR models) at the four, eight and twelve

quarter horizons. Note, also that at these forecasting horizons (and over the full

forecast sample) this model performs better than all the other competing models. This

again brings out the influence of time-varying parameters and a large information set

on forecast performance.

The TVAR model that uses the lag of inflation as the threshold variable consistently

delivers more accurate forecasts of all three variables at the four, eight and

twelve-quarter forecasts horizon, pointing to the importance of regime switches driven

by lagged inflation. The estimates for ST-VAR model suggest a similar result, albeit

the difference across the STAR models is less stark.

The performance of the recursive and rolling VAR models is quite similar to each

other. The rolling VAR performs slightly better than the recursive VAR model at the

one, eight and twelve quarter horizons, with the recursive VAR delivering a lower trace

at the four-quarter horizon.

Finally, the BMA procedure does well on the basis of the trace at the four-quarter

horizon with an estimated trace close to the best-performing model. At longer forecast

horizons, the BMA procedure produces the most accurate forecast in terms of the trace.

4.3 Forecast performance and the recent financial crisis

In this subsection we consider how the forecasts from our models perform when

considering the period 2008 Q1 to 2010 Q4, a period over which the financial crisis

intensified. In particular, we consider how the forecasting models perform given the

information set at 2007 Q4. Chart 3 plots the one step and four step ahead recursive

forecasts for these variables from the 24 forecasting models alongside the actual

realised values over these quarters.
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Consider the one step ahead GDP forecast in the top-left panel. One striking feature of

this panel is that most models predicted zero or positive growth over the second half of

2008 and 2009 when actual growth was strongly negative. In 2008 Q4, actual

annualised GDP growth was -3.6%. The three STAR models were the only

specifications to predict negative GDP growth with forecasts of around -1%. Note that

these models predicted a growth rate in 2008 Q4 which was much lower than the

realised value. In 2009 Q1, the prediction of these three STAR models of a GDP

growth rate of -7% was fairly close to the actual value, with the forecasts from these

models overshooting in the next quarter. By 2009 Q3, a number of other forecasting

models (RSVAR* (three and four regimes), RSVAR** (three and four regimes),

TVP-FAVAR and FAVAR, UC, TVAR (inflation) and the rolling VAR) were also

predicting negative growth. Overall, the STAR models delivered plausible (but

volatile) one-step forecasts over the large contraction in GDP growth in 2008 and

2009. The top-right panel of the chart shows that a similar interpretation can be placed

on the four step ahead GDP forecasts.

The middle panel of Chart 3 shows the one and four step ahead forecasts for inflation.

In 2008 Q4, annualised quarterly inflation was 5.5%. It then dropped to 0.8% in the

next quarter before reaching a trough at 0.1%. Inflation then rose to around 4% by

mid-2010. Most of the forecasting models failed to predict (at the one-quarter

horizon), the large drop in inflation between 2008 Q4 and 2009 Q1. The exceptions are

the general regime-switching VAR with two regimes and the three STAR models.

These four specifications predict a fall in inflation (over this quarter) from 3% to 10%,

while the other forecasting models essentially indicate no change. In contrast, the

majority of the forecasting models predict a large fall in inflation between 2009 Q1 and

2009 Q2, while actual inflation remained fairly stable. Over the second half of 2009

and 2010, the gentle increase in inflation is matched by the profile of most one step

ahead forecasts. At the four-quarter forecast horizon, most forecasting models

predicted higher-than-actual inflation over 2008 and the first half of 2009, and

underpredicted inflation over the second half of 2009 and 2010 Q1.

As with the one step ahead inflation forecast, the forecasting models have a hard time

in matching the sharp fall in the short-term interest rate in the last quarter of 2008
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(bottom-left panel). However, after 2009 Q2, the models predict interest rates close to

zero. The bottom-right panel shows that the four-quarter forecasts are quite far away

from the true realised values, possibly reflecting the atheoretical nature of the

forecasting models.

5 Conclusions

This paper investigates the performance of a variety of models with time-varying

parameters in forecasting UK GDP growth, inflation and the short-term interest rate.

Overall, different models perform better than others on occasions, therefore it is most

appropriate to consider a suite of models when forecasting – and that is what

policymakers typically do, including the MPC.

More specifically, the TVP-VAR and the TVAR model provide forecasts for GDP

growth with a lower average RMSE than an AR(1) model. The TVAR model also

appears to perform better in matching the GDP growth profile over the recent financial

crisis.

Models with time-varying parameters lead to a large improvement in inflation

forecasting performance over the AR(1) benchmark. In particular, the TVP-FAVAR

model, the TVP-VAR and the UC model have a RMSE that is substantially lower than

the benchmark model.

Stock and Watson’s unobserved component model, the FAVAR, the TVP-VAR and the

TVAR standout when considering the interest rate forecast. But, in general, it appears

that the models considered in this study are less successful at forecasting interest rates

than GDP growth and inflation.

Across the three variables, the TVP-FAVAR model stands out, delivering the most

accurate forecasts at the four-quarter horizon on average over the sample. This

highlights the role played by a large information set and time-varying parameters in

delivering forecast accuracy.
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Appendix A: Tables and charts

Chart 1: RMSE error at the four-quarter horizon of TVP-VAR, TVAR and ST-
VAR models in forecasting GDP growth (relative to an AR(1) model)
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Chart 2: RMSE error at the four-quarter horizon of TVP-FAVAR, TVP-VAR,
rolling VAR and UC models in forecasting inflation (relative to an AR(1) model)
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Chart 3: Forecasts and actual data 2008 Q1 to 2010 Q4
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Table B: Log marginal likelihood for the forecasting models over the full estimation
sample

Log marginal likelihood
RSVAR two regimes -915.428
RSVAR three regimes -970.105
RSVAR four regimes -1028.07
RSVAR* two regimes -986.545

RSVAR* three regimes -984.634
RSVAR* four regimes -1063.59
RSVAR** two regimes -978.358

RSVAR** three regimes -1054.53
RSVAR** four regimes -1112.36

TVP-VAR (General) -3663.45
TVP-VAR (Standard) -2352.16

TVP-VAR (Homoscedastic) -1151.24
TVP-FAVAR 527.5055

TVP-FAVAR (Homoscedastic) 5673.594
FAVAR -56.5631

UC -202.318
TVAR (GDP) -423.984

TVAR (Inflation) -414.781
TVAR (Rate) -363.855

ST-VAR (GDP) -381.474
ST-VAR (Inflation) -265.502

ST-VAR (Rate) -291.512
VAR (Rolling) -24.1139

VAR (Recursive) 116.9715
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Table F

Note: A trace value smaller than 1 indicates that our forecasting models outperform the AR(1) (green). 

A trace value greater than 1 indicates the opposite (blue). 

 

Trace- multivariate forecast evaluation statistic relative to an AR(1) model 

1976-2007 1992-2007
Models 1 Q 4 Q 8 Q 12 Q 1 Q 4 Q 8 Q 12 Q

RSVAR  two  regimes 16.07 2.86 1.73 1.32 12.15 1.08 0.43 0.38

RSVAR  three  regimes 4.21 2.50 1.78 1.52 2.34 0.72 0.68 0.70

RSVAR  four  regimes 4.40 2.82 1.73 1.53 1.87 0.84 0.75 0.74

RSVAR*  two  regimes 1.03 1.25 1.38 1.48 1.12 0.62 0.79 0.90

RSVAR*  three  regimes 1.05 1.25 0.93 0.92 0.73 0.44 0.43 0.40

RSVAR*  four regimes 1.03 1.18 0.88 0.82 0.73 0.35 0.34 0.28

RSVAR**  two  regimes 1.13 1.07 1.14 1.19 1.08 0.60 0.78 0.89

RSVAR**  three  regimes 1.02 1.49 0.96 0.94 0.82 0.51 0.53 0.53

RSVAR**  four  regimes 1.05 1.58 0.96 0.90 0.70 0.39 0.42 0.40

TVP-VAR  (General) 2.61 1.33 1.23 0.84 0.86 0.43 0.47 0.49

TVP-VAR  (Standard) 0.95 0.94 0.93 0.82 0.82 0.42 0.46 0.45

TVP-VAR  (Homoscedastic) 0.95 0.94 0.93 0.82 0.82 0.42 0.46 0.45

TVP-FAVAR  0.92 0.90 0.88 0.81 0.87 0.44 0.33 0.29

TVP-FAVAR  (Homoscedastic) 1.02 0.77 0.70 0.64 0.93 0.42 0.32 0.30

FAVAR  1.30 0.80 0.77 0.78 0.81 0.52 0.67 0.77

UC 0.90 0.86 0.75 0.66 0.76 0.41 0.30 0.25

TVAR  (GDP) 1.28 1.00 1.29 1.39 0.64 0.62 0.81 1.01

TVAR  (Inflation) 0.92 0.93 0.94 0.83 0.86 0.46 0.39 0.35

TVAR  (Rate) 1.03 1.06 1.13 1.04 0.96 0.59 0.57 0.54

ST-VAR  (GDP) 1.01 0.96 1.10 1.10 0.73 0.53 0.69 0.80

ST-VAR  (Inflation) 0.99 0.95 1.03 0.98 0.76 0.54 0.66 0.73

ST-VAR  (Rate) 0.95 0.99 1.10 1.08 0.75 0.55 0.70 0.79

VAR  (Rolling) 0.95 1.09 1.08 1.01 0.68 0.44 0.40 0.35

VAR  (Recursive) 0.97 1.00 1.12 1.08 0.84 0.50 0.64 0.73

BMA 1.09 0.87 0.69 0.50 0.93 0.42 0.31 0.29
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Appendix B: Regime-switching VAR

Consider the change-point VAR model

Zt = cS +
K

∑
j=1

BSZt− j +Ω
1/2
H εt (B-1)

where S = 1...M follows a M-state Markov chain. The Gibbs sampler cycles through

the following steps.

1. Sampling the states St :

Given starting values for the VAR parameters and covariances and the transition

probabilities, the unobserved state variables S and H are drawn using multi-move

Gibbs sampling to draw from the joint conditional density f
(
St |Zt ,cs,B1,s, . . . ,BK,s, P̃

)
and f

(
Ht |Zt ,cs,B1,s, . . . ,BK,s, Q̃

)
Kim and Nelson (1999, Chapter 9) show that the

Markov property of the state variable implies that

f
(
S̄t |Zt

)
= f

(
S̄T |ZT

)T−1

∏
t=1

f
(
S̄t |S̄t+1,Zt

)
(B-2)

where S̄t = St or Ht . This density can be simulated in two steps:

(a) Calculating f
(
S̄T |ZT

)
: The Hamilton (1989) filter provides f

(
S̄t |Zt

)
, t = 1, ....T.

The last iteration of the filter provides f
(
S̄T |ZT

)
.

(b) Calculating f
(
S̄t |S̄t+1,Zt

)
: Kim and Nelson (1999, Chapter 9) show that

f
(
S̄t |S̄t+1,Yt

)
∝ f

(
S̄t+1|S̄t

)
f
(
S̄t |Yt

)
(B-3)

where f
(
S̄t+1|S̄t

)
is the transition probability and f

(
S̄t |Zt

)
is obtained via Hamilton

(1989) filter in step a. Kim and Nelson (1999) (page 214) show how to sample S̄t from

(B-3).
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2. Sampling cS, B1,S, . . . ,Bk,S,

Conditional on a draw for St and Ht the model in equation (B-1) is simply a sequence

of Bayesian VAR models with heteroscedasticity (when Ω evolves independently) .

Collecting the VAR coefficients for regime S = J into the (N× (N×P+1))×1 vector

ϒS, the left-hand side of equation (B-1) for regime S = J into the matrix Y S
t and the

right-hand side (ie lags and the intercept terms) of equation (B-1) into the matrix XS
t ,

we rewrite the VAR in each regime in state-space form

vec(Y S
t ) =

(
IN⊗XS

t

)
ϒ

S
t +Ω

1/2
H ε

S
t

ϒ
S
t = ϒ

S
t−1

and use the Carter and Kohn (2004) algorithm to derive the mean and variance of ϒS
t .

As described below, this requires a Kalman filter recursion. The initial state and its

covariance for the Kalman filter is specified as the mean and variance of the normal

inverse Wishart prior. The prior mean and variance is set using dummy observations:

YD =



diag(γ1σ1...γNσN)

τ

0N×(P−1)×N

..............

diag(σ1...σN)

..............

01×N


,andXD =


JP⊗diag(σ1...σN)

τ
0NP×1

0N×NP 0N×1

..............

01×NP c

 (B-4)

where σ1....σN represents standard deviations of the error term of an AR model

estimated using each endogenous variable, γ1 to γN denotes the prior mean for the

coefficients on the first lag, τ is the tightness of the prior on the VAR coefficients and c

is the tightness of the prior on the constant terms. We set τ = 10 and c = 1/10000 in

our implementation.

3. Sampling ΩH
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Conditional on a draw for St and Ht , the error covariance matrix has an inverse Wishart

conditional posterior. We calculate the residuals of the VAR model as

ε̂t =
J

∑
S=1

(
Y S

t −XS
t ϒ̄

S)× I(St = J) (B-5)

where ϒ̄S equals ϒS reshaped into a (N×P+1)×N matrix (to be conformable with

XS
t ) andI(.) is an indicator variable. Note that when St = Ht (i.e. the coefficients and

the error covariance matrix switch jointly) or ΩH = Ω steps 2 and 3 simplify and

standard formulas for the conditional posterior of Bayesian VARs can be used.

4. Sampling P̃ and Q̃:

The prior for the non-zero elements of the transition probability matrix pi j is of the

following form

p0
i j = D(ui j)

where D(.) denotes the Dirichlet distribution and ui j = 15 if i = j and ui j = 1 if i 6= j.

This choice of ui j implies that the regimes are fairly persistent. The posterior

distribution is:

pi j = D
(
ui j +ηi j

)
where ηi j denotes the number of times regime i is followed by regime j.

We use 200,000 iterations and discard the first 199,000 as burn-in.

B.1 Calculation of the marginal likelihood

A detailed description of the calculation of the marginal likelihood for change-point

models can be found in Bauwens and Rombouts (2012).
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Appendix C: Time-varying VAR

Consider the general time-varying VAR model

Zt = ct +
K

∑
j=1

BtZt− j +Ω
1/2
t εt

where

Φt = Φt−1 +ηt ,var(ηt) = Qt (C-1)

VAR(vt)≡Ωt = A−1
t Ht(A−1

t )′. (C-2)

Qt = Ã−1H̃t
(
Ã−1)′ (C-3)

where the structure of At , Ht and Ã is described in the text.

C.2 Prior distributions and starting values

The initial conditions for the VAR coefficients φ0 are obtained via an OLS estimate of a

fixed-coefficient VAR using the first 40 observations of the sample period. Let v̂ols

denote the OLS estimate of the VAR covariance matrix estimated on the pre-sample

data described above. The prior for the diagonal elements of the VAR covariance

matrix (see (8)) is defined as lnh0 ∼ N(lnµ0, I3) where µ0 are the diagonal elements of

the Cholesky decomposition of v̂ols. The prior for the off-diagonal elements At is

A0 ∼ N
(
âols,V

(
âols
))

where âols are the off-diagonal elements of v̂ols, with each row

scaled by the corresponding element on the diagonal. V
(
âols
)

is assumed to be

diagonal with the elements set equal to ten times the absolute value of the

corresponding element of âols.

Let QOLS denote the OLS estimate of the coefficient covariance matrix using the

training sample. When Q is time-invariant, its prior distribution is assumed to be

inverse Wishart with a scale matrix given by Q̄ = QOLS×T0× k where the scalar
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k = 3.5e−04 as in Cogley and Sargent (2005). The prior degrees of freedom are set

equal to T0 = 40 the length of the training sample. When Q is time-varying, a prior

distribution is required for the initial values of H̃t . The mean of this log normal prior is

set as the log of diag(AOLSQOLSA′OLS)×T0× k where AOLS is the inverse of the Choleski

decomposition of QOLS. The variance of the prior distribution is set to 1.

The prior distribution for the blocks of S is inverse Wishart: Si,0 ∼ IW (S̄i,Ki) where

i = 1..3 indexes the blocks of S. S̄i is calibrated using âols. Specifically, S̄i is a diagonal

matrix with the relevant elements of âols multiplied by 10−3.Following Cogley and

Sargent (2005) we postulate an inverse-gamma distribution for the elements of G,

σ2
i ∼ IG

(
10−4

2 , 1
2

)
.

C.3 Simulating the posterior distributions

Time-varying VAR coefficients

The distribution of the time-varying VAR coefficients φt conditional on all other

parameters and hyperparameters is linear and Gaussian: φt\Xi,t ,Ξ ∼ N
(

φT\T ,PT\T

)
and φt\φt+1,Xi,t ,Ξ ∼ N

(
φt\t+1,φt+1

,Pt\t+1,φt+1

)
where t = T −1, ..1, Ξ denotes a vector

that holds all the other VAR parameters and

φT\T = E (φT\Xi,t ,Ξ) ,PT\T =Cov(φT\Xi,t ,Ξ) ,φt\t+1,φt+1
= E

(
φt\Xi,t ,Ξ,φt+1

)
and

Pt\t+1,Ft+1 =Cov
(
φt\Xi,t ,Ξ,φt+1

)
. As shown by Carter and Kohn (2004) the simulation

proceeds as follows. First we use the Kalman filter to draw φT\T and PT\T and then

proceed backwards in time using φt|t+1 = φt|t +Pt|tP−1
t+1|t

(
φt+1−φt

)
and

φt|t+1 = φt|t−Pt|tP−1
t+1|tPt|t .

Elements of Ht

Following Cogley and Sargent (2005), the diagonal elements of the VAR covariance

matrix are sampled using the Metropolis Hastings algorithm in Jacquier, Polson and

Rossi (2004). Given a draw for φt the VAR model can be written as A′t
(
Z̃t
)
= ut .

Where Z̃t = Zt−
L

∑
l=1

φl,tZt−l = vt and VAR(ut) = Ht . Jacquier et al (2004) note that

conditional on other VAR parameters, the distribution hit , i = 1..3 is given by
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f (hit/hit−1,hit+1,uit) = f (uit/hit)× f (hit/hit−1)× f (hit+1/hit) =

h−0.5
it exp

(
−u2

it
2hit

)
×h−1

it exp
(
−(lnhit−µ)2

2σhi

)
where µ and σhi denote the mean and the

variance of the log-normal density h−1
it exp

(
−(lnhit−µ)2

2σhi

)
. Jacquier et al (2004) suggest

using h−1
it exp

(
−(lnhit−µ)2

2σhi

)
as the candidate generating density with the acceptance

probability defined as the ratio of the conditional likelihood h−0.5
it exp

(
−u2

it
2hit

)
at the old

and the new draw. This algorithm is applied at each period in the sample.

Element of At

Given a draw for φt the VAR model can be written as A′t
(
Z̃t
)
= ut where

Z̃t = Zt−
L

∑
l=1

φl,tZt−l = vt and VAR(ut) = Ht . This is a system of equations with

time-varying coefficients and given a block diagonal form for Var(τt) the standard

methods for state-space models described in Carter and Kohn (2004) can be applied.

VAR hyperparameters

Conditional on Zt , φl,t , Ht , and At , the innovations to φl,t , Ht , and At are observable,

which allows us to draw the hyperparameters - the elements of Q, S, and the σ2
i - from

their respective distributions. When Q is time-varying, its diagonal elements are drawn

using the Jacquier et al (2004) Metropolis step described above.

We use 50,000 iterations and discard the first 49,000 as burn-in.

C.4 Calculation of the marginal likelihood

Following Chib (1995) the log marginal likelihood is defined as

lnP(Zt\m) = lnF(Zt\Ξ̂,m)+ ln p
(
Ξ̂
)
− lnG

(
Ξ̂\Zt

)
. We use a particle filter to evaluate

the log likelihood of the models with stochastic volatility. The log likelihood for the

model with homoscedastic shocks can be evaluated using the Kalman filter.

For the most general TVP model, the posterior density is defined as

G
(
Ξ̂\Zt

)
= G

(
Ĉ,M̂, Ĝ, D̂

)
where Ĉ denotes the posterior mean of the non-zeros

elements of Ã, M̂ denotes the posterior mean of the variance-covariance of τt , Ĝ
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denotes the posterior mean of the variance of ν̃t and D̂ is the posterior mean of the

variance of ũt (see Section 3.2 for a definition of τt , ν̃t and ũt). We drop the dependence

on Zt for notational simplicity.

The posterior distribution can be factored as

G
(
Ĉ,M̂, Ĝ, D̂

)
= H

(
Ĉ\M̂, Ĝ, D̂

)
×H

(
M̂\Ĝ, D̂

)
×H

(
Ĝ\D̂

)
×H

(
D̂
)

(C-4)

Consider each term on the right-hand side of equation (C-4):

The term H
(
Ĉ\M̂, Ĝ, D̂

)
can be expressed as∫
H
(
Ĉ\M̂, Ĝ, D̂,Θ

)
×H

(
Θ\M̂, Ĝ, D̂

)
dΘ (C-5)

where Θ = {Φt ,Ht , At , H̃t} denotes the state variables in the model. Note that

H
(
Ĉ\M̂, Ĝ, D̂,Θ

)
is a complete conditional and can be approximated using an

additional Gibbs run that samples from the conditional densities of the states given the

posterior mean of the model parameters ie Θ j\Ĉ,M̂, Ĝ, D̂ and then evaluates the normal

density H
(
Ĉ\M̂, Ĝ, D̂,Θ j

)
after a burn-in period. H

(
Ĉ\M̂, Ĝ, D̂

)
is approximated as

1
J ∑

J
j=1 H

(
Ĉ\M̂, Ĝ, D̂,Θ j

)
where J denotes the number of retained Gibbs draws.

Similarly, the term H
(
M̂\Ĝ, D̂

)
is approximated via a Gibbs run that samples from the

following conditional densities: (1) M j\Ĝ, D̂,C j,Θ j (2) C j\Ĝ, D̂,M j,Θ j and (3)

Θ j\Ĝ, D̂,M j,C j. After a burn-in period H
(
M̂\Ĝ, D̂

)
≈ 1

J ∑
J
j=1 H

(
M̂\Ĝ, D̂,C j,Θ j

)
where H

(
M̂\Ĝ, D̂,C j,Θ j

)
is the inverse Wishart density.

The term H
(
Ĝ\D̂

)
is approximated via a Gibbs run that cycles through the following

conditionals: (1) G j\C j,M j, D̂,Θ j (2) C j\G j,M j, D̂,Θ j (3) M j\C j,G j, D̂,Θ j and (4)

Θ j\M j,C j,G j, D̂. After a burn-in period H
(
Ĝ\D̂

)
≈ 1

J ∑
J
j=1 H(Ĝ\C j,M j, D̂,Θ j) where

H(G j\C j,M j, D̂,Θ j) is an inverse gamma density for each element of G.

The term H
(
D̂
)

is approximated via a Gibbs run that that cycles through all the

conditionals: (1) G j\C j,M j,D j,Θ j (2) C j\G j,M j,D j,Θ j (3) M j\G j,C j,D j,Θ j (4)

D j\M j,G j,C j,Θ j and (5) Θ j\M j,C j,G j,D j. After a burn-in period,

H
(
D̂
)
≈ 1

J ∑
J
j=1 H(D̂\M j,G j,C j,Θ j) which is an inverse gamma density for each

element of D.
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We use 20,000 replications in these additional Gibbs runs discarding the first 15,000 as

burn-in.
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Appendix D: Time-varying FAVAR model

Our time-varying FAVAR model consists of the following equations

Xit = βFt + eit (D-1)

Fk,t = ct +
2

∑
l=1

φl,tFk,t− j + vt

eit = ρieit−1 + εit

with F = {F1
t ,F

2
t ,F

3
t }, β denotes the factor loading matrix and the coefficients φ̃l,t = {

ct ,φl,t} follow a random walk:

φ̃l,t = φ̃l,t−1 +ηt

The covariance matrix of the innovations vt is factored as

VAR(vt)≡Ωt = A−1
t Ht(A−1

t )′ (D-2)

where the time-varying matrices Ht and At are given as in the time-varying VAR model:

Ht ≡


h1,t 0 0

0 h2,t 0

0 0 h3,t

 At ≡


1 0 0

α21,t 1 0

α31,t α32,t 1

 (D-3)

with the hi,t evolving as geometric random walks

lnhi,t = lnhi,t−1 +νt .

Following Primiceri (2005) we postulate that the non-zero and non-one elements of the

matrix At evolve as driftless random walks

αt = αt−1 + τ̄t (D-4)

and we assume the vector [ε′t , η′t , τ̄
′
t , ν̃
′
t ]
′ to be distributed as

εt

ηt

τ̄t

vt

∼ N (0,V ) , with V =


Rt 0 0 0

0 QF 0 0

0 0 S 0

0 0 0 G

 and G = diag
(
σ

2
1, ...σ

2
K

)
.

(D-5)

Bernanke, Boivin and Eliasz (2005) show that identification of the FAVAR model given

by equations (D-1) requires putting some restrictions on the matrix of factor loadings.
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Following their example we assume that the top J× J block of βik is an identity matrix.

The model is then estimated using a Gibbs sampling algorithm with the conditional

prior and posterior distributions described below.

D.5 Prior distributions and starting values

Following Bernanke et al (2005) we centre our prior on the factors (and obtain starting

values) by using a principal components (PC) estimator applied to each Xi, t . In order to

reflect the uncertainty surrounding the choice of starting values, a large prior

covariance of the states (P0/0) is assumed.

Starting values for the factor loadings are also obtained from the PC estimator after

imposing the above restrictions. The priors on the diagonal elements of R are assumed

to be inverse gamma

Rii ∼ IG(R0,V0).

where R0 = 0.01 and V0 = 1 denote the prior scale parameter and the prior degrees of

freedom respectively. The prior distributions for the parameters of the transition

equation are set as described for the time-varying VAR model in Section C.2.

D.6 Simulating the posterior distributions

Factors and factor loadings

This closely follows Bernanke et al (2005). Details can also be found in Kim and

Nelson (1999).

Factors

The conditional posterior distribution of the factors Ft is linear and Gaussian

FT\Xi,t ,Rt ,Ξ ∼ N
(
FT\T ,PT\T

)
Ft\Ft+1,Xi,t ,Rt ,Ξ ∼ N

(
Ft\t+1,Ft+1,Pt\t+1,Ft+1

)
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where t = T −1, ..,1, the vector Ξ holds all other FAVAR parameters. Carter and Kohn

(2004) is used to calculate the mean and variance of these distributions. For details see

Kim and Nelson (1999).

Elements of R

Following Bernanke et al (2005) R is a diagonal matrix. The diagonal elements Rii are

drawn from the following inverse gamma distribution

Rii ∼ IG(R̄ii,T +V0)

where

R̄ii = ε̂
′
iε̂i +R0

where ε̂i denoting the residual X∗it −F ′∗βk where X∗it = Xit−ρiXit−1 and F∗t = Ft−ρiFt−1

Factor loadings

The factor loadings are sampled from

βi ∼ N (β∗,M∗)

where β
∗ =

(
Σ
−1
0 + 1

Rii
F∗′t F∗t

)−1(
Σ
−1
0 B0 +

1
Rii

F∗′t X∗it
)

and M∗ =
(

Σ
−1
0 + 1

Rii
F∗′t F∗t

)−1
.

Note B0 = 0 and Σ0 is an identity matrix.

Autocorrelation coefficients

The autocorrelation coefficients ρi are sampled from

ρi˜N (ρ∗,V ∗)

where ρ∗ =
(

Σ
−1
ρ0 +

1
Rii

e′t−1et−1

)−1(
Σ
−1
ρ0 ρ0 +

1
Rii

e′t−1et

)
and V ∗ =

(
Σ
−1
ρ0 +

1
Rii

e′t−1et−1

)−1

with ρ0 = 0 and Σρ0 = 1

Elements of the time-varying VAR (transition equation)

Given an estimate of the factors, the model becomes a VAR with drifting coefficients

and covariances and we use the algorithm described in Section C.3 to sample from the

conditional posterior distributions.
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As estimation of this model is more computationally intensive, we use 10,000 draws of

the MCMC algorithm and use the last 1,000 draws for inference.

D.7 Calculation of the marginal likelihood

The log likelihood for the TVP-FAVAR models is evaluated using a particle filter while

the Kalman filter is used for the fixed-coefficient FAVAR. The posterior density for the

most general model (ie the TVP-FAVAR with stochastic volatility) is defined as

G
(
Ξ̂\Zt

)
= G

(
β̂, ρ̂, R̂, Q̂F ,M̂, Ĝ

)
where M̂ denotes the posterior mean of the

variance-covariance of τ̄t , Ĝ denotes the posterior mean of the variance of vt and

β̂, ρ̂, R̂, Q̂F denote the posterior means of the model parameters described above. We

drop the dependence on Zt for notational simplicity. This posterior distribution can be

factored as

G
(

β̂, ρ̂, R̂, Q̂F ,M̂, Ĝ
)

= (D-6)

H
(

β̂\ρ̂, R̂, Q̂F ,M̂, Ĝ
)
×H

(
ρ̂\R̂, Q̂F ,M̂, Ĝ

)
×

H
(
R̂\Q̂F ,M̂, Ĝ

)
×H

(
Q̂F\M̂, Ĝ

)
×H

(
M̂\Ĝ

)
×H

(
Ĝ
)

where (as in the case of the TVP-VAR) each density on the RHS can be written as a

‘weighted average’ across the state variables Θ = {Ft ,Φt ,Ht ,At} . For example

H
(

β̂\ρ̂, R̂, Q̂F ,M̂, Ĝ
)
=

∫
H
(

β̂\ρ̂, R̂, Q̂F ,M̂, Ĝ,Θ
)
×H(Θ\ρ̂, R̂, Q̂F ,M̂, Ĝ)dΘ. The

form of each density on the RHS of equation (D-6) can be approximated using the

method in Chib (1995). That is, as in the case of the TVP-VAR model, we use

additional Gibbs iterations to approximate each of these densities and integrate over

the states. We use 10,000 iterations with a burn-in period of 7,000 iterations.
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Appendix E: Unobserved component model with stochastic volatility

Consider the UC model:

Z̃t = βt +
√

σtεt

βt = βt−1 +
√

ϖtvt

lnσt = lnσt−1 + e1t ,var (e1t) = g1

lnϖt = lnϖt−1 + e2t ,var (e2t) = g2

E.8 Priors and starting values

The prior for the initial value of the stochastic volatility lnσt is defined as

lnσ0 ∼ N(lnµ0,10) where µ0 are is the variance of Z̃t0−βt0 where t0 denotes the

training sample of 40 observations and βt0 is an initial estimate of the trend using an

HP filter. Similarly lnϖ0 ∼ N(lnϖ0,10) where ϖ0 = ∆βt0. The prior for g1 and g2 is

inverse gamma with prior scale parameter set equal to 0.01 and 0.0001 respectively

with degrees of freedom set equal to one.

E.9 Simulating the posterior distributions

Conditional on a value for g1 and g2 the Metropolis algorithm described in Jacquier

et al (2004) is used to draw σt and ϖt . βt is drawn using the Carter and Kohn (2004)

algorithm. Given a draw for σt and ϖt , g1 and g2 can easily be sampled from the

inverse gamma distribution. We use 10,000 draws of the MCMC algorithm and use the

last 1,000 draws for inference.

E.10 Calculating the marginal likelihood

The log likelihood function for this model is calculated using a particle filter. The

posterior density in the equation for the marginal likelihood is defined as

G
(
Ξ̂\Zt

)
= G(ĝ1, ĝ2) where we have dropped the dependence on Zt for notational
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simplicity. This density can be factored as

G(ĝ1, ĝ2) = H (ĝ1\ĝ2)×H (ĝ2)

where H (ĝ1\ĝ2) =
∫

H (ĝ1\ĝ2,Θ)×H (Θ\ĝ2)dΘ and

H (ĝ2) =
∫

H (ĝ2\Θ)×H (Θ)dΘ where Θ = {βt ,σt ,ϖt} denotes the state variables in

the model. As described above for the TVP-VAR and the TVP-FAVAR models,

additional Gibbs runs can be used to approximate these two terms. We use 10,000

iterations in these additional Gibbs samplers and discard the first 7,000 as burn-in.
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Appendix F: Threshold and smooth transition VAR models

F.11 Prior distribution

The prior distribution of the VAR parameter vector in each regime

βS̃t
≡
(

vec
(
B1,S̃t

)′
, ...,vec

(
BK,S̃t

)′
,vech

(
ΩS̃t

)′)′
has the same natural conjugate normal Wishart prior distribution. The prior moments

of βS̃t
and the tightness hyperparameters around these moments have been set equal to

those used in Section C.2. The prior distribution of c is the truncated normal

distribution with mean equal to the mean of Zi,t−1 and the standard deviation is adjusted

to deliver the appropriate acceptance rate (between 25%-40%). The distribution of c is

truncated between the 0.15 and 0.85 quantile of the empirical distribution of Zi,t−1 to

ensure that at least 15% of the observations lie in this regime. Similar to Engemann

and Owyang (2010), the prior distribution used for γ is the gamma distribution with

both hyperparamters equal to one.

F.12 Posterior estimation

This section briefly describes the steps of the Gibbs and Metropolis-Hasting sampling

scheme used to derive the posterior distribution of the entire parameter vector. For

more details please consult the studies of Chen and Lee (1995) and Lopes and Salazar

(2006)

STEP 1 For c j−1 and γ j−1 S̃t is constructed using (15) for TVAR or (16) for ST-VAR

STEP 2 Given S̃t from STEP 1 we derive the OLS version of βS̃t
(β̂S̃t

)

STEP 3 β̂S̃t
is combined with the prior moments of βS̃t

to construct its posterior

conditional moments, which are used to draw from the normal Wishart distribution

(β j
S̃t

)
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STEP 4 Given β
j
S̃t

, c j and γ j are generated by

c j = c j−1 +σcuc,t

γ
j = γ

j−1 +σγuγ,t

STEP 5 If the ratio
L
(

Zt ;β
j
S̃t

c j,γ j
)

p
(

β
j
S̃t

)
p(c j)p(γ j)

L
(

Zt ;β
j−1
S̃t

c j−1,γ j−1
)

p
(

β
j−1
S̃t

)
p(c j−1)p(γ j−1)

is greater than a random variable

generated by the uniform over the unit interval then the draw β
j
S̃t

c j and γ j is

accepted – set c j−1 = c j and γ j−1 = γ j and proceed to STEP 1. Otherwise the draw is

discarded – c j−1 = c j−1 and γ j−1 = γ j−1 and proceed to STEP 1.

The values of σc and σγ have been calibrated to deliver an appropriate acceptance rate.

F.13 Calculating the marginal likelihood

The log likelihood of these models is available in analytical form. The posterior

distribution is defined as G
(
Ξ̂\Zt

)
= G(B̂,Ω̂, ĉ, γ̂). This density can be factored as

G(B̂,Ω̂, ĉ, γ̂) = G(B̂\Ω̂, ĉ, γ̂)×G(Ω̂\ĉ, γ̂)×G(ĉ\γ̂)×G(\γ̂) (F-1)

The first two terms on the RHS of equation (F-1) can be approximated via extra Gibbs

runs while the method in Chib and Jeliazkov (2001) is used to approximate the

unknown densities in the last two terms.
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Appendix G: Rolling and recursive VARs

We use the natural conjugate prior for the VAR described in equation (B-4) with τ = 10

and c = 1/10000. Details on the posterior moments can be found in Banbura,

Giannone and Reichlin (2010). An analytical expression for the marginal likelihood

can be found in Carriero, Clark and Marcellino (2011).
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Appendix H: Data for the FAVAR models

The data set used to estimate the FAVAR models is listed in Table G. Note that when

estimating the model to forecast inflation, we include GDP growth and the short-term

interest rate in Xit (see equation (D-1)) along with the variables in Table G. When

estimating the model to forecast GDP growth we include inflation and the interest rate

in Xit along with the variables in Table G. Similarly, GDP growth and inflation are

added to the panel when estimating the model to forecast interest rates.
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Table G: Data used to estimate FAVAR model. ONS denotes Office for National
Statistics. IFS is International Financial Statistics. GFD is Global Financial Data

Variable no Variable Name Source Transformation
1 General government: Final consumption expenditure ONS Log Difference
2 ESA95 output index: F: Construction: ONS Log Difference
3 Total exports ONS Log Difference
4 Total imports ONS Log Difference
5 Gross Fixed Capital Formation ONS Log Difference
6 IOP: Manufacturing ONS Log Difference
7 SA95 output index: Transport storage & communication ONS Log Difference
8 SA95 output index: Total ONS Log Difference
9 ESA95 output index: Distribution, hotels & catering; repairs ONS Log Difference
10 IOP: All production industries ONS Log Difference
11 IOP: Electricity, gas and water supply ONS Log Difference
12 IOP: Manuf of food, drink & tobacco ONS Log Difference
13 IOP: Manuf coke/petroleum prod/nuclear fuels ONS Log Difference
14 IOP: Manuf of chemicals & man-made fibres ONS Log Difference
15 Consumption ONS Log Difference
16 Trade balance ONS None
17 RPI total Food ONS Log Difference
18 RPI total non-food ONS Log Difference
19 RPI total all items other than seasonal food ONS Log Difference
20 GDP Deflator ONS Log Difference
21 Wages ONS Log Difference
22 Import prices IFS Log Difference
23 Export prices IFS Log Difference
24 M4 deposits BOE Log Difference
25 M4 lending BOE Log Difference
26 Real Nationwide house prices Nationwide Log Difference
27 Dividend yield GFD None
28 PE ratio GFD None
29 FTSE All-Share index GFD Log Difference
30 Pounds US dollar rate GFD Log Difference
31 Pounds euro rate GFD Log Difference
32 Pounds yen rate GFD Log Difference
33 NEER GFD Log Difference
34 Pounds Canadian dollar rate GFD Log Difference
35 Pounds Australian dollar rate GFD Log Difference
36 Corporate bond yield GFD None
37 Unemployment Rate GFD None
38 5-year govt bond yield GFD None
39 10-year govt bond yield GFD None
40 20-year govt bond yield GFD None
41 Commodity price index GFD Log Difference
42 Brent oil price GFD Log Difference
43 Industrial production index GFD Log Difference
44 United Kingdom composite leading indicators GFD Log Difference
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