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The paper
> The goal: Forecasting in a data-rich environment

» Many predictors
» Many targets

» The problem: over-fitting due to high collinearity
» The proposed solution
» Shrinkage estimator
» Reduced rank regression
» Empirics: Forecasting the Macroeconomy and bonds returns
» Shrinkage: from the curse to the blessing of dimensionality
» Additional accuracy gains from Reduced Rank Regression
» Setting the degree of shrinkage and the rank of the regression
» Assume a Dynamic Factor Structure
> Analyze the distribution of the eigenvalues
» Interpreting the factors by imposing group membership

)
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The discussion

» General comments

» Very broad paper
> Interesting and policy relevant problem
» Competently executed empirical exercise

» The structure of the discussion

» Shrinkage is indeed a powerful forecasting tool
» Shrinkage, Reduced Rank and Dynamic Factor Models
» Empirical issues
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Forecasting with Many Predictors

Forecast y; using a large information set

Qr =span[Z7_5;5s=0,1,2,..

where Zt = (th7 ...7Znt)/.

]
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Forecasting with Many Predictors

Forecast y; using a large information set

Qr =span[Z7_5;s=0,1,2,..]

where Zt = (th7 ...7Znt)/.

I14nT = Proj [yT+4|Q27]

The forecast
YremT = BoZr + o+ By Zr_p = B X7
where BA is estimated using sample information
{}/t, Ztr t= 1, ceey T}

Xe=(2Z},..,20_,)  B=(B D)
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Traditional time series methods

Estimate B via OLS, i.e. minimize the in-sample fit of the model:

T—h

B=argmin D (yern — 5'X)°

t=1
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Traditional time series methods

Estimate 3 via OLS, i.e. minimize the in-sample fit of the model:

—

T—h
B=argmin 3 (yern— BX:)?
t=1
B=(XX) X'y | = [g0ts = Bixy

where X = (X1, ..., X7-1)"s ¥ = (Vht1y o, Y1)
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Traditional time series methods

Estimate 3 via OLS, i.e. minimize the in-sample fit of the model:

T—h

B=argmin D (yern — 5'X)°

t=1

= | = (X'X)" Xy |= |95 7 = B'Xr

where X = (X1, ..., X7-1)"s ¥ = (Vht1y o, Y1)

Problem!! If the size information set (n) is too large relative to

the sample size (T) then OLS forecasts are poor or unfeasible:
curse of dimensionality.



Curse of dimensionality (solutions)

» Principal components regression
(Forni, Hallin, Lippi and Reichlin; Stock and Watson; Bai and
Ng...)

» Bayesian regression
(De Mol, Giannone and Reichlin, 2008)

6
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Solution 1: Principal components regression

PCA aims at building r uncorrelated linear combinations zj¢, ..., Z
of a set of observable random variables xi¢, ..., X,t, which explain
most of the variance.

21,01 = argming, o, >y |X — afz1)?
s.it. zjz1/T =1

2y, G0 = argming, o, | X — &21 — ahz|?
s.t. zy21/T =0and 2,2/ T =1

; e S 1 /
Sample covariance matrix: 2~ = T—h—pX X

Spectral decomposition: fvj =vidj d1>dr> ... > dypi1)
Normalized principal components: 2j; = ﬁv]Xt
lj

d1++dr
dl+~~-+dr+dr+1+--~+dn

(average R?)

. percentage of variance explained by 21, ..., 2,
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Principal components regression

Forecast based on the first r PC of the predictors:

n(p+1)
~PC _ As
YT+nT = E: Wi ZiT
j=1

& OLS coefficients of the y over z;

)1 ifj<r
A ) otherwise

Remark: w; = 1,Vj = OLS

= PC regression give weight only to linear combinations of the
predictors that account for most of their fluctuations

= it captures the large/pervasive driving forces
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Bayesian regression with Gaussian prior

Idea: shrink regression coefficients to zero via priors (limit length
B) + estimate coefficients as the posterior mode to compute

forecast

Gaussian prior: u; i.i.d. N(0,02)

=

‘ Yerh = ' Xe + Uppn ‘

Bbay — (X/X—FCqu)al)_l X'y

=

|/8NN(07(D0)

~ bay
YT+hT

— B/bay XT
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Solution 2: Bayesian regression with Gaussian prior

A simple case:
i.i.d prior on 3: ®g = U%I
& ridge: penalized regression (L2 norm)

T—h ) n(p+1)
b ] )
i ay:argmﬁmz (Yt+h—5lxt) +v Z B
t=1 i=1
. . 0.2
e penalization parameter: v = -4
8

phay = (X'X +vl) ' X'y

For the special case of iid gaussian prios, there is a simple relation
between OLS, PC and Bayesian regression = Bayesian regression
is a weighted sum of projections on PC

10/20



Bayesian regression with Gaussian prior

Rewriting the Ridge in terms of principal components, we have:

n(p+1)

~ bay
YTonT = E : wj&;ZiT

_,_/
proj [yr4s/Q27]
where the weights are:

dj
Wi =~ v
di+ +—=
= Like PC regression, Bayesian regression give more weight to
linear combination of the data that explain most of the overall
variance
= Like PC regression, Bayesian regressions capture the
large/pervasive driving forces
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A model for collinearity: The Dynamic Factor Model

Xe = Nfe + et

v

fy: (stationary) common factors, E[f;f/] = I,

v

e:: (stationary) idiosyncratic component, E[e;e]] = W
E[fie;] =0
= EX X[ =AM +V

v

v
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A model for collinearity: The Dynamic Factor Model

Xt:Aﬂ+et

v

fy: (stationary) common factors, E[f;f/] = I,

v

e:: (stationary) idiosyncratic component, E[e;e]] = W
E[fie;] =0
= EX X[ =AM +V

v

v

Assumption (Approximate factor model)

0<A< I|m|nf )\m,,, (N'A) < I|msup)\max (NA) < X < o0

n— o0

0 < v < liminf Apmin (W) < lim sup Apmax (V) < 9 < 00
- n—o0 n— 00

AA N n ifj<r

= AW+ V) { bounded otherwise
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Bayesian Shrinkage with Collinear Regressors
Characterizing asymptotic collinearity (DFM)
ifj<r

n
Aj (3) ~ { bounded otherwise
n ifj<r
n otherwise

= g~ $ T
.

Asymptotic behavior of shrinkage estimator:

J

Recall: y7, + = 01 widyfir;

v bay pc
OO = YT T YTnT

setting -2 — 0 and T

¢ ~ cnT1/2+0 does the job!!

-2

= v="1
B
[As nT,v 1 (or og 1) — more shrinkage]
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Factor models and Shrinkage: additional insights

Xt = /\ft + et
Yigh = [fe + tpp
Assume:
E[fif]] =1 Elete;]] =V , E[usu)] =, ur Loer, up Lfrer L1y
This implies:
Proj[Y:|X¢] = BX:

with B = T(NWIA + 1) INW-L = [(AN + W) IA
Two observations:
> [|Bif3 =0 () if (NW~IA)"1 = O (1): this motivates
shrinkage

» B = af’: this might motivate Reduced Rank regression
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Factor models and Shrinkage:... Intuition

Large PC capture common pervasive forces driving
macroeconomic fluctuations.

e Ridge gives more weight to large/pervasive forces underlying
the predictors

= If there are only few large/pervasive factors

= consistency

e If the common forces are pervasive, all variables contain
relevant info since they are all affected by the factors

= we should weight all of them, but should use a prior that
shrinks increasingly more coefficients as n increases

For asymptotics, see De Mol, Giannone and Reiclin, JoE 2008.
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Growing evidence on the power of shirnkage

» Large Bayesian VARs

» Banbura, Giannone and Reichlin (2010), Bickel and Song
(2011), Carriero, Clark and Marcellino (2012), Carriero,
Kapetanios and Marcellino (2010a) Christoffel, Coenen and
Warne (2011), Giannone, Lenza and Primiceri (2011), Koop
(2010); Koop and Korobolis (2010), Lenza, Pill and Reichlin
(2010), Matheson (2010), Stock and Watson (2009),...
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» Sparse and stable portfolio selection:

» Brodie et al. (2009), Carrasco and Noumon (2012), De Miguel
et al., (2009)...

» Optimal pooling of forecasts:
» Conflitti, De Mol and Giannone (2012)
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Growing evidence on the power of shirnkage

v

Large Bayesian VARs

» Banbura, Giannone and Reichlin (2010), Bickel and Song
(2011), Carriero, Clark and Marcellino (2012), Carriero,
Kapetanios and Marcellino (2010a) Christoffel, Coenen and
Warne (2011), Giannone, Lenza and Primiceri (2011), Koop
(2010); Koop and Korobolis (2010), Lenza, Pill and Reichlin
(2010), Matheson (2010), Stock and Watson (2009),...

Sparse and stable portfolio selection:
» Brodie et al. (2009), Carrasco and Noumon (2012), De Miguel
et al., (2009)...

Optimal pooling of forecasts:
» Conflitti, De Mol and Giannone (2012)

Combining shrinkage and reduced rank regression

v

v

v

» Carriero, Kapetanios and Marcellino, 2011 and 2012
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Should we reduce the rank?

This is an empirical question depending on how strong is the factor
structure

This paper
» Not really if the focus is on macroeconomic forecasting
See also: Carriero, Kapetanios and Marcellino (JAE 2010)
» Yes we should when forecasting bond returns

» The yield data are indeed very well characterized by a factor
structure.

17 /20



Table II. Relaive WTMSFE vs. AR(p™) benchmark

RR SW BVAR MB RRP BRE
Hor: 1
Rel. WTMSFEE 1.36 1.70 1.18 2.08 1.15 1.22
[PS10 1.10%* 1.09 (.90 (.99 0.97 0.90
PUNEW 1.31 1.08 1.11* 1.08 1.12* | B Lol
FYFF 1.00* 1.01 0.94 1.02 0.93 0.99
Hor: 2
Rel. WTMSFE 1.17 1.35 1.06 1.67 1.06 1.05
IPS10 1.14 1.05 0.86 1.05 0.90 0.81
PUNEW 1.08 1.02 (.99 1.10 0.99 1.05
FYFEF 1.01 0.9%8 0.91 1.01 0.86* 0.95
Hor: 3
Rel. WIMSFE 1.07 1.17 0.99 1.40 0.98 0.97
IPS10 1.06 1.03 0.80 1.06 0.81 0.78*
PUNEW 0.93 0.96 087* 1.06 0.86* 0.91
FYFEF 1.01 0.99 0.92 1.01 (.89* 0.94
Hor: 6
Rel. WTMSFE 0.94 1.11 088 1.09 0.87 0.88
IPS10 0.87 1.04 0.60+ 1.01 0.67* o
PUNEW 0.76*** 0.95 0.71%* 1.06 0.71** 0.74***
FYFF 1.00 1.12 0.89* 0.99 0.B3*+* 0.91**
Hor: 9
Rel. WTMSFE 0.91 1.13 0.85 1.01 0.84 0.87
IPS10 0.82 1.07 0.68¥** 1.02 (.66%* 0.
PUNEW 0.76* 0.97 0.67+* 1.11* 0.67** 0.697*
FYFF 0.97 1.14 091* 1.00 ().79*** 0.90***
Hor: 12
Rel. WTMSFE 0.90 1.20 0.85 0.97 (.84 0.87
[PS10 0.87 1.10 0.68F* 1.01 0.65%** 0.74**
PUNEW 4 B 7 L 0.99 0647+ 1.06 1 0.64**
FYFF 0.95 1.20 0.9+ 1.00 0.B4*** 0.9]1**
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Why do rank reduction helps forecasting bond returns?

The data are indeed very well characterized by a factor structure
because of the way they have been constructed.

They have been constructed by using the Nelson and Siegel model
to interpolate between the existing limited number of securities
with different maturities and coupons (see Gurkaynak et al., 2006)

A fact or an artifact?
Check with appropriate data, for example constructed using
unsmoothed Fama-Bliss method
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A not on reduced rank regression
This paper is about minimizing:
|Y — XBc'||3 + penalty
= Spectral decomposition of
(Y'X/T)X'X)T +vl)"1(X'Y/T)

This amount at computing the PC (SVD) of the fit XB

Carriero, Kapetanios and Marcellino look at SVD of B only

Maximum likelihood implies minimizing
det[(Y — XBa') (Y — Xpa')]
= Spectral decomposition of

YY/T)" N Y'X/T)X'X/T +v)"{(X'Y/T)

The two approaches coincide when the target variables are not correlated

The term (Y'Y /T)™! is necessary to exploit the collinearity features of
Y that has motivated the paper.

These incoherencies can be avoided by resorting to a properly defined
bayesian framework (Geweke, 1996)
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Additional comments

» Setting the degree of shrinkage and the rank of the regression:
very restrictive assumptions and not completely developed
implications. You might exploit the more general results
derived by Onatsky, 2010.

» Group membership and other linear restrictions can also be
imposed by QML estimation of factor models (Doz et al.,
2011)
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