Deficits, public debt dynamics and tax and spending multipliers

Gauti B. Eggertsson, Matthew Denes, Sonia Gilbukh, NY Fed ECB, December, 2012

Disclaimer: The views expressed do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System

Questions

- What is the effect of government spending cuts or tax hikes on the budget deficit?
- What is the effect of the budget deficit itself on short-run and long-run outcomes?
- Does the state of the economy matter?
- Objective: Incorporate debt dynamics into NK model.

....."austerity" vs "deficit spending" debate....

Main findings

- Rules change if interest rate collapse to zero (are "constant")
- 1. Normally, cutting government spending reduces deficit approximately one to one.
 - But! Much smaller effect at zero interest rates, can even be <u>negative</u> (spending self-financing)
- 2. Normally, expectations about future labor and sales taxes and government spending irrelevant for short-term demand
 - But! Very large at zero interest rates rates. Expectation of
 - higher long-run labor taxes contractionary
 - lower government expansionary.
 - \rightarrow Implication: Effect of deficits is policy regime dependent.

Bottom-line

- At zero interest rate economy demand-determined.
- Emphasis should be on stuff that increases spending.
- Short-run demand not only dependents on short-run fiscal policy but also about <u>expectation about future taxes and</u> <u>spending at zero interest rates</u>.
- Deficit will have an effect on those expectations.
- But! These expectations are policy regime dependent.
- ... can both make a case for and against "austerity", depending on policy regime ...
- Will clarify this and quantify in what follows.
- Estimate of "government spending multiplier" depends now on how it is financed

Related lit

- Eggertsson (2010), Christiano, Eichenbaum and Rebelo (2010), Woodford (2010), Eggertsson and Krugman (2012)
- Eggertsson and Woodford (2004), Correia, Fahri, Niccolini and Teles (2010).
- Erceg and Linde (2012)
- Villaverde et al, Uhlig et al, Leeper et al, Taylor et al, Bilbie, Monacelli, Perotti etc etc
- →Goal here to get simple closed for solutions to make sense of all this literature.

Outline of talk

- 1. Basic model, large shocks, calibration
- Characterize deficits when large shocks a1. SR policy unchanged

a2. deficits are neutral (LR lump sum taxes)

- 3. How does SR policy affect deficits?
- 4. Deficits and the LR and the SR
 i. How do LR taxes/spending affect equilibrium?
 ii. How do deficits affect exp of LR taxes/spending?
 iii.How, then, do deficit change SR demand?

Households

shock

Utility

$$\max E_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left[u(C_{T}) + g(G_{T}) - \int_{0}^{1} v(L_{T}(j)) dj \right] \xi_{T}$$

s.t. budget constraint

Fiscal policy instruments

$$B_{t} = (1 + i_{t-1})B_{t-1} - (1 + \tau_{t}^{s})P_{t}C_{t} - T_{t}$$

+ $(1 - \tau_{t}^{I})[\int_{0}^{1} \Pi_{T}(i)di + \int_{0}^{1} w_{T}(j)L_{T}(j)dj]$

Consumption and price indices

Monetary policy instrument

$$C_{t} \equiv \left[\int_{0}^{1} c_{t}(i)^{\frac{\theta-1}{\theta}} di\right]^{\frac{\theta}{\theta-1}}, P_{t} \equiv \left[\int_{0}^{1} p_{t}(i)^{1-\theta} di\right]^{\frac{1}{1-\theta}}$$

The Model Firms

Monapolistically competetive firms and linear production function

$$y_t(i) = Y_t(\frac{p_t(i)}{P_t})^{-\theta}$$
 $y_t(i) = L_t(i)$

Calvo prices. Fraction $(1-\alpha)$ of firms set new prices in each period (exclusive of sales tax). Commit to produce whatever demanded at the price set.

$$\max_{p_{t}^{*}} E_{t} \{ \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} Q_{t,T} (1-\tau_{T}^{P}) [p_{t}^{*} (\frac{p_{t}^{*}}{P_{T}})^{-\theta} Y_{T} - W_{T} (j) (\frac{p_{t}^{*}}{P_{T}})^{-\theta} Y_{T}] \} = 0$$

Resource constraint

$$Y_t = C_t + G_t$$

Equilibrium

$$\{Y_t, C_t, p_t^*, P_t\} - \{i_t, \tau_t^I, \tau_t^s, G_t\} - \{\xi_t\}$$

The Government

• If possible $\pi_t = 0$

..... otherwise $i_t = 0$

• Explore deficit and the marginal effect of

$$\tau_t^I, \tau_t^s, G_t$$

The Government

• If possible $\pi_t = 0$

..... otherwise $i_t = 0$

• Explore deficit and the marginal effect of

$$\tau_t^I, \tau_t^s, G_t$$

Summary

AD
$$\hat{Y}_{t} = E_{t}\hat{Y}_{t+1} - \sigma(i_{t} - E_{t}\pi_{t+1} - r^{e}(\xi_{t}))$$

+ $E_{t}(\hat{G}_{t} - \hat{G}_{t+1}) - \sigma E_{t}(\hat{\tau}_{t}^{s} - \hat{\tau}_{t+1}^{s})$

AS

People determine "demand", i.e. overall spending $\pi_{t} = \kappa \hat{Y}_{t} + \beta E_{t} \pi_{t+1} + \kappa \psi \left[\hat{\tau}_{t}^{s} + \hat{\tau}_{t}^{w} \right] - \kappa \psi \sigma^{-1} \hat{G}_{t}$ Firms supply whatever is demanded but demand has effect on their $i_t \geq 0$ ZB pricing $r_t^e \equiv \log \beta^{-1} + \hat{\xi}_t - E_t \hat{\xi}_{t-1}$

Summary

$$\frac{\overline{b}}{\overline{Y}}\hat{b}_{t} - \frac{\overline{b}}{\overline{Y}}(1+\overline{i})\hat{b}_{t-1} = Deficits$$

$$\frac{\overline{b}}{\overline{Y}}(1+\overline{i})[i_{t-1} - \pi_{t}] - (\overline{\tau}^{I} + \overline{\tau}^{s})\hat{Y}_{t} \qquad \begin{array}{c} \text{Endogenous} \\ \text{component} \end{array}$$

$$+\hat{G}_t - \hat{\tau}_t^s - \hat{\tau}_t^I - \frac{T}{\overline{Y}}\hat{T}_t$$

Policy driven component

Two states: Outcome in model

- Suppose all spending-taxes rates constant (lump sum taxes adjust).
- For large enough shocks to r_S^e
- Zero bound binding → (potentially) large drop in output and inflation

Constructing numerical examples

- We ask the model go match a scenario using Bayesian Methods
- **1. Great Depression (GD) scenario**
- -30 percent drop in output
- -10 percent deflation
- 2. Great Recession (GR) scenario
- -10 percent drop in output
- -2 percent drop in inflation
- Main difference between posteriors:
 - -- Duration of shock longer in GD scenario.

Outline of talk

- 1. Basic model, large shocks, calibration
- 2. Characterize deficits when large shocks

a1. SR policy unchanged

a2. deficits are neutral (LR lump sum taxes)

- 3. How does SR policy affect deficits?
- 4. Deficits and the LR and the SR
 i. How do LR taxes/spending affect equilibrium?
 ii. How do deficits affect exp of LRtaxes/spending?
 iii.How, then, do deficit change SR demand?

2. Characterizing deficits when shock

Experiment:

- All taxes at steady state in SR (realistic)
- Only LR lump sum taxes change (not realistic)
- Question: What happens to the deficit?

$$\hat{D}_{S} = \frac{\overline{b}}{\overline{Y}} (1 + \overline{i}) [i_{S} - \pi_{S}] - (\overline{\tau}^{w} + \overline{\tau}^{s}) \hat{Y}_{S}$$

The Great Depression and the Great Recession in the model.

• Here: Budget deficit irrelevant because future lump sum taxes change.

Shortly will explicitly model how today deficits affect future taxes → current demand

• Before getting there: What is the effect of various policies on deficits?

•Suppose you just want to "eliminate" deficits. How to do it?

Outline of talk

- 1. Basic model, large shocks, calibration
- 2. Characterize deficits when large shocks

a1. SR policy unchanged

a2. deficits are neutral (LR lump sum taxes)

- 3. How does SR policy affect deficits?
- 4. Deficits and the LR and the SR
 i. How do LR taxes/spending affect equilibrium?
 ii. How do deficits ch. exp of LR taxes/spending?
 iii.How, then, do deficit change SR demand?

3. How does SR policy affect deficits?

- At zero interest rates:
 - Government spending multipliers high.
 - Sales tax cuts work well.
 - Increasing income taxes expansionary
- Input into asking: What happens to deficits?

Basic property of model: Multipliers can be large at zero interest rate

- Why?
- Basic reason:
 - Nominal interest rate do not rise/drop to offset policy
 - Expectation of the same thing as long as shock negative
 - \rightarrow Negative spiral (shock)
 - → Virtuous spiral (spending/taxes)

	i > 0		i = 0	
	GD	GR	GD	GR
	[5% , 95%]	[5% , 95%]	[5% , 95%]	[5% , 95%]
$\frac{\Delta \hat{Y}_s}{\Delta \hat{G}_s}$	0.4	0.4	2.2	1.2
	[0.2 , 0.6]	[0.3 , 0.6]	[1.4 , 3.2]	[1.1 , 1.5]
$rac{\Delta \hat{Y}_{s}}{\Delta \hat{ au}_{S}^{s}}$	-0.3	-0.3	-1.8	-0.9
	[-0.5 , -0.2]	[-0.5 , -0.2]	[-3, -0.9]	[-1.3, -0.5]
$rac{\Delta \hat{Y}_{S}}{\Delta \hat{ au}_{S}^{I}}$	-0.5	-0.5	0.4	0.1
	[-0.8 , -0.3]	[-0.7, -0.3]	[0.2, 0.5]	[0.06, 0.3]

Austerity can be self-defeating

$$\frac{\Delta \hat{D}_{S}}{\Delta \hat{G}_{S}} = (1 + \bar{\tau}^{s}) \frac{\Delta \hat{G}_{S}}{\Delta \hat{G}_{S}} + \frac{\bar{b}}{\bar{Y}} (1 + \bar{\imath}) \frac{\Delta [\hat{\imath}_{S} - \pi_{S}]}{\Delta \hat{G}_{S}} + (\bar{\tau}^{I} + \bar{\tau}^{s}) \frac{\Delta \hat{Y}_{S}}{\Delta \hat{G}_{S}}$$

At positive interest rate always >0 At zero.....

$$\frac{\Delta \hat{D}_{S}}{\Delta \hat{G}_{S}} < 0 \text{ if } \frac{\Delta \hat{Y}_{S}}{\Delta \hat{G}_{S}} > \Gamma = \frac{1 + \bar{\tau}^{s} + \frac{\bar{b}}{Y}(1 + \bar{\imath}) \frac{\kappa}{1 - \beta \mu} \sigma^{-1} \psi}{\bar{\tau}^{I} + \bar{\tau}^{s} + \frac{\bar{b}}{Y}(1 + \bar{\imath}) \frac{\kappa}{1 - \beta \mu}}$$

	i > 0		i = 0	
	GD	GR	GD	GR
	[5% , 95%]	[5% , 95%]	[5% , 95%]	[5% , 95%]
ΔD_S	1.1	1.2	-0.3	0.5
ZĜs	[1.03 , 1.3]	[1.09, 1.5]	[-1 , 0.3]	[0.2, 0.6]
$\Delta \hat{D}_S \over \Delta \hat{ au}_S^s$	-1.1	-1.2	0.3	-0.4
	[-1.2 , -1]	[-1.3 , -1]	[-0.3 , 1.1]	[-0.5 , -0.1]
$\Delta \hat{D}_S \ \Delta \hat{ au}_S^I$	-0.6	-0.6	-1.4	-1.2
	[-0.8 , -0.4]	[-0.7 , -0.3]	[-1.6 , -1.2]	[-1.3 , -1.1]

Discussion

- Usually cutting gov. spending reduces deficit about one to one.
- At zero interest rates: Austerity measures can increase rather than decrease the deficit.
- Same applies to sales tax increases (Laffer type result).
- Income tax increases close the deficit and are expansionary on output.
- <u>To reduce deficit, government have mainly focused</u> <u>on spending cuts AND sales tax increase</u>

..... while "stimulating" via income tax cuts.

So far

- Only talked about short run effect of fiscal policy on deficit and output in short run.
- But discussion usually about the long-run
- Can we tie the long-run more closely into the analysis?
- Does the LR analysis potentially change our short-run "multipliers" (Yes! At least at zero!)

Outline of talk

- 1. Basic model, large shocks, calibration
- Characterize deficits when large shocks a1. SR policy unchanged

a2. deficits are neutral (LR lump sum taxes)

- 3. How does SR policy affect deficits?
- 4. Deficits and the LR and the SR
 i. How do LR taxes/spending affect equilibrium?
 ii. How do deficits affect exp of LR taxes/spending?
 iii.How, then, do deficit change SR demand?

4. Deficits and the LR and the SR

- A. How do LR taxes/spending affect equilibrium?
- B. How do deficits affect expectation of LR taxes/spending?
- C. How, then, do deficit change SR demand?

Long run:
$$\pi_{t} = 0 \forall t$$

AD
$$\hat{Y}_{t} = E_{t}\hat{Y}_{t+1} - \sigma(i_{t} - E_{t}\pi_{t+1} - r_{t}^{e}) + E_{t}(\hat{G}_{t} - \hat{G}_{t+1}) - \sigma E_{t}(\hat{\tau}_{t}^{s} - \hat{\tau}_{t+1}^{s})$$

Pricing equation

AS
$$\pi_t = \kappa \hat{Y}_t + \beta E_t \pi_{t+1} + \kappa \psi [\hat{\tau}_t^s + \hat{\tau}_t^I] - \kappa \psi \sigma^{-1} \hat{G}_t$$

 $\hat{Y}_L = -\psi [\hat{\tau}_L^s + \hat{\tau}_L^I] + \psi \sigma^{-1} \hat{G}_L$

	<i>i</i> > 0		
	GD	GR	
	[5% , 95%]	[5% , 95%]	
$\frac{\Delta \hat{Y}_L}{\Delta \hat{G}_L}$	0.4	0.4	
	[0.2, 0.6]	[0.3 , 0.6]	
$\Delta \hat{Y}_L$	-0.3	-0.3	
$\Delta \hat{ au}_L^s$	[-0.5 , -0.2]	[-0.5 , -0.3]	
$\Delta \hat{Y}_L$	-0.5	-0.5	
$\Delta \hat{ au}_L^I$	[-0.8 , -0.3]	[-0.7 , -0.3]	

Short run: if $\pi_t = 0 \forall t \rightarrow SR = LR$

$$\begin{aligned} \hat{Y}_{t} &= E_{t}\hat{Y}_{t+1} - \sigma(i_{t} - E_{t}\pi_{t+1} - r_{t}^{e}) \\ &+ E_{t}(\hat{G}_{t} - \hat{G}_{t+1}) - \sigma E_{t}(\hat{\tau}_{t}^{s} - \hat{\tau}_{t+1}^{s}) \end{aligned}$$

Pricing equation

AS
$$\pi_t = \kappa \hat{Y}_t + \beta E_t \pi_{t+1} + \kappa \psi [\hat{\tau}_t^s + \hat{\tau}_t^I] - \kappa \psi \sigma^{-1} \hat{G}_t$$

 $\hat{Y}_s = -\psi [\hat{\tau}_s^s + \hat{\tau}_s^I] + \psi \sigma^{-1} \hat{G}_s$

- To re-iterate
- LR taxes and spending have no effect on SR output with CB that target zero inflation

$$\hat{Y}_{S} = -\psi [\hat{\tau}_{S}^{s} + \hat{\tau}_{S}^{I}] + \psi \sigma^{-1} \hat{G}_{S}$$

SR: If $i_{t} = 0$ $\hat{Y}_{t} = E_{t}\hat{Y}_{t+1} + \sigma E_{t}\pi_{t+1} + \sigma r_{t}^{e}$ AD $+ E_{t}(\hat{G}_{t} - \hat{G}_{t+1}) - \sigma E_{t}(\hat{\tau}_{t}^{s} - \hat{\tau}_{t+1}^{s})$

Pins down output

Expectation of LR policy play a role?

AS
$$\pi_t = \kappa \hat{Y}_t + \beta E_t \pi_{t+1} + \kappa \psi [\hat{\tau}_t^s + \hat{\tau}_t^I] - \kappa \psi \sigma^{-1} \hat{G}_t$$

Determines inflation

Key points

- Expectations of future fiscal policy play a big role at the ZB.
- Usually these policies simply offset by monetary policy.
- ZB is the Pandora box because AD comes into full force.
- "Confidence" matters

	i > 0		i = 0	
	GD	GR	GD	GR
$\frac{\Delta \hat{Y}_S}{\Delta \hat{G}_L}$	0	0	-1.8	-0.8
$\frac{\Delta \hat{Y}_S}{\Delta \hat{\tau}_L^s}$	0	0	1.4	0.6
$\frac{\Delta \hat{Y}_S}{\Delta \hat{\tau}_L^I}$	0	0	-1.7	-0.7

Key points

- Expectations of future fiscal policy play a big role at the ZB.
- Usually these policies simply offset by monetary policy.
- ZB is the Pandora box because AD comes into full force.
- "Confidence" matters

	i > 0		i = 0	
	GD	GR	GD	GR
$\frac{\Delta \hat{Y}_S}{\Delta \hat{G}_L}$	0	0	-1.8	-0.8
$\frac{\Delta \hat{Y}_S}{\Delta \hat{\tau}_L^s}$	0	0	1.4	0.6
$\frac{\Delta \hat{Y}_S}{\Delta \hat{\tau}_L^I}$	0	0	-1.7	-0.7

What do SR deficit do?

- Can consider this question independently of how deficit created.
- Depends upon how it is financed in the future

i)
$$\hat{b}_t = \hat{b}_{t-1} + \epsilon_t$$
 for $t < \tau$
ii) $\hat{\tau}_t^s = \hat{\tau}_t^w = \hat{G}_t = 0$ for $t < \tau$.

iii) $\hat{b}_t = \delta \hat{b}_{t-1}$ for $t \ge \tau$ where $0 < \delta < 1$

Assumption on deficits

- Financed in proportion to taxes on...
- .. future consumption γ_s .. future labor taxes $\dot{\gamma}_w$.. smaller future government γ_G

(come back to ... nuclear option .. Inflation)

	<i>i</i> > 0		i = 0	
	GD	GR	GD	GR
$\frac{\Delta Y_s}{\Delta b_s/G_L > 0}$	0	0	0.2	0.1
$\frac{\Delta Y_s}{\Delta b_s / \tau_L^s > 0}$	0	0	0.2	0.1
$\frac{\Delta Y_s}{\Delta b_s / \tau_L^I > 0}$	0	0	-0.2	-0.1

Effect of deficits policy regime dependent

Experiments: Regime matters

- Now we can ask well defined questions such as:
 - Suppose current deficits are paid off by future labor taxes.
 - How big is the multiplier? (much smaller)
 - What if by reduction in future government (much higher)
 - What if by future sale tax increases (much higher)
 - We can (and will) put numbers on this

The effect of increasing government spending netting out effect on budget

$$\frac{\Delta \hat{Y}_{s}}{\Delta \hat{G}_{s}}(\text{from Table 4}) + \frac{\Delta \hat{D}_{s}}{\Delta \hat{G}_{s}}(\text{from Table 5}) * \frac{\Delta \hat{Y}_{s,t}}{\Delta \hat{D}_{s}/\hat{G}_{L,t}>0}(\text{from Table 9})$$

$$GR \text{ (mode)} \quad 1.2 \quad 0.5 \quad 0.3 = 1.35$$

$$GD \text{ (mode)} \quad 2.2 \quad -0.3 \quad 1.8 = 1.66.$$

The effect of increasing government spending netting out effect on budget

$$\frac{\Delta \hat{Y}_{s}}{\Delta \hat{G}_{s}} (from Table 4)}{\Delta \hat{G}_{s}} + \underbrace{\Delta \hat{D}_{s}}{\Delta \hat{G}_{s}} (from Table 5)}_{\Delta \hat{G}_{s}} * \underbrace{\Delta \hat{Y}_{s,t}}{\Delta \hat{D}_{s}/\hat{\tau}_{L,t}^{I} > 0} (from Table 9)}_{I.2}$$

$$GR (mode) \qquad 1.2 \qquad 0.5 \qquad -0.3 \qquad = 1.05$$

$$GD (mode) \qquad 2.2 \qquad -0.3 \qquad -1.9 \qquad = 2.77$$

Introducing default risk

- Basically introduces a new pricing equation
- Only has an effect via the government budget constraint.
- Can use the analysis we have already seen.

Independent currency vs. common

- Having an independent currency transform "default" risk showing up in the nominal interest rate into
- Future inflation risk

Conclusion

- Austerity can increase deficits rather than reducing them
- "Confidence" matters
- Net effect of future budget adjustment can either increase multipliers or reduce them.
- Policy regimes matter.

Matching scenarios

	distribution	mean	standard deviation	mode (GR)	mode (GD)
α	beta	0.66	0.05	0.784	0.77
β	beta	0.99669	0.001	0.997	0.997
$1-\mu$	beta	1/12	0.05	0.143	0.099
σ^{-1}	gamma	2	0.5	1.22	1.153
ω	gamma	1	0.75	1.69	1.53
θ	gamma	8	3	13.22	12.70
r_L	gamma	-0.010247	0.005	-0.0128	-0.0107