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Abstract

We propose and explore several related ways of reducing reliance of point forecast accuracy

evaluation on expected loss, E(L(e)), where e is forecast error. Our central approach dispenses

with the loss function entirely, instead using a “stochastic error divergence” (SED) accuracy

measure based directly on the forecast-error c.d.f., F (e). We explore several variations on the

basic theme; interestingly, all point to the primacy of absolute-error loss and its generalizations.
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1 Introduction

One often wants to evaluate (that is, rank) competing point forecasts by accuracy. Invariably

one proceeds by ranking by expected loss, E(L(e)), where e is forecast error and the loss

function L(e) satisfies L(0) = 0 and L(e) ≥ 0, ∀e. But (1) the mathematical expectation

E(L(e)) is only one aspect of the loss distribution, in contrast to the complete summary

provided by its c.d.f. F (L(e)), and moreover (2) the relevant loss function L is far from

obvious in many situations.1 In this paper we address both (1) and (2).

We make two related contributions; the first addresses (1), and the second addresses (2).

First, we develop accuracy measures that incorporate aspects of the entire loss distribution,

F (L(e)), not just its expectation E(L(e)). We do this by assessing the divergence between

F (L(e)) and the unit step function at 0,

F ∗(L(e)) =

{
0, L(e) < 0

1, L(e) ≥ 0,

because nothing can dominate a benchmark forecast whose errors consistently achieve zero

loss; i.e., a forecast whose errors achieve F (L(e)) = F ∗(L(e)).

Second, recognizing that one rarely knows what loss function might be appropriate or

realistic, we dispense with the loss function entirely, proposing accuracy measures based

directly on the c.d.f. F (e) as opposed to the c.d.f. F (L(e)). In particular, we assess the

divergence between F (e) and the unit step function at 0,

F ∗(e) =

{
0, e < 0

1, e ≥ 0,

because nothing can dominate a benchmark forecast whose errors are consistently 0, i.e., a

forecast whose errors achieve F (e) = F ∗(e).

The results differ markedly in the two cases. The first case involving F (L(e)) vs.

F ∗(L(e)), which we call “stochastic loss divergence,” turns out to be something of a dead

end. In sharp contrast, the second case involving F (e) vs. F ∗(e), which we call “stochastic

error divergence,” turns out to yield useful insights with important practical implications.

We proceed as follows. We explore stochastic loss divergence in section 2, and then we

move to stochastic error divergence in section 3. In section 4 we explore a weighted version

1In an abuse of notation, throughout we use “F (·)” to denote any cumulative density function. The
meaning will be clear from context.



of stochastic error divergence, which allows positive and negative errors of the same abso-

lute magnitude nevertheless to have different costs. In section 5 we propose a generalized

stochastic error divergence measure, which allows us to relate our stochastic error diver-

gence to energy distance and Cramer-von-Mises divergence, among others, and we provide a

complete characterization of the relationship between generalized stochastic error divergence

minimization and expected loss minimization. We conclude in section 6.

2 Ranking Forecasts by Stochastic Loss Divergence

By ranking forecasts by SLD we mean that we prefer the forecast whose loss distribution

F (L(e)) has smallest divergence from the reference loss function F ∗(·), the unit step function

at 0. In what follows we make this idea more precise and explore its implications.

2.1 The Basic Idea

The idea is simply that loss should be small. Expected loss, however, is only one aspect of

the loss distribution. Hence we use the entire loss distribution, quantifying its divergence

from unit probability mass at 0. More precisely, we use loss L(e), but instead of ranking by

E(L(e)) we rank by stochastic divergence’ of F (L(e)) from F ∗(·), the unit step function at

0. That is, we rank forecasts by the area,

A(L(e)) =

∫ ∞
0

[1− F (L(e))] dL(e), (1)

where smaller A(·) is better. In Figure 1a we illustrate the SLD idea, and in Figure 1b we

show two loss distributions such that we prefer F1 to F2 under the SLD criterion.

2.2 A Negative Result

Let us begin with a lemma that will feature not only in the negative result of this section,

but also in the positive results of subsequent sections.

Lemma 2.1 For random variable x with c.d.f. F (x), if E(|x|)) <∞,

limc→∞ c(1− F (c)) = 0.
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(a) c.d.f. of L(e). Under the stochastic loss divergence (SLD) criterion, we prefer
smaller A(L(e)).

(b) Two forecast loss distributions. Under the stochastic loss divergence (SLD)
criterion, we prefer F1 to F2.

Figure 1: Stochastic Loss Divergence (SLD)

Proof We have

c(1− F (c)) = cP (X > c)

= c

∫ ∞
c

dP (x)

=

∫ ∞
c

c dP (x)

≤
∫ ∞
c

x dP (x) (replacing c with x)

=

∫ ∞
0

x dP (x)−
∫ c

0

x dP (x).
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But this converges to zero as c→∞, because∫ ∞
0

x dP (x) ≤
∫ ∞
−∞
|x| dP (x) <∞.

Now let us proceed to consider minimization of SLD. Unfortunately it takes us nowhere,

insofar as it corresponds to expected loss minimization, as we now show.

Lemma 2.2 (Equivalence of Stochastic Loss Divergence and Expected Loss) Let L(e) be a

forecast-error loss function satisfying L(0) = 0 and L(e) ≥ 0, ∀ e, with E(|L(e)|)) < ∞.2

Then

A(L(e)) =

∫ ∞
0

[1− F (L(e))] dL(e) = E(L(e)), (2)

where F (L(e)) is the cumulative distribution function of L(e). That is, SLD equals expected

loss for any loss function and error distribution.

Proof To evaluate E(L(e)) we integrate by parts:∫ c

0

L(e)f(L(e)) dL(e) = −L(e)[1− F (L(e))]
∣∣∣c
0

+

∫ c

0

[1− F (L(e))] dL(e)

= −c(1− F (c)) +

∫ c

0

[1− F (L(e))] dL(e).

Now letting c→∞ we have

E(L(e)) =

∫ ∞
0

L(e)f(L(e)) dL(e) = lim
c→∞
−c(1− F (c)) +

∫ ∞
0

[1− F (L(e))] dL(e)

= 0 +

∫ ∞
0

[1− F (L(e))] dL(e) (by Lemma (2.1))

= A(L(e)).

We call this result a “lemma” rather than a “proposition” because we will use it in proving a

subsequent proposition. To the best of our knowledge, it has not appeared in the forecasting

literature. It does appear, however, in the hazard and survival modeling literature, in whose

jargon “expected lifetime equals the integrated survival function.”

2In another abuse of notation, throughout we use “L(e)” to denote either the loss random variable or its
realization. The meaning will be clear from context.
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3 Ranking Forecasts by Stochastic Error Divergence

The conjecture explored in Section 2 was that, because expected loss is only one aspect of

the loss distribution, it may be of interest to base point forecast comparisons on suitable

functionals of the entire loss distribution. That turned out, however, to lead full circle, with

SLD minimization corresponding to expected loss minimization. Here we go farther and

arrive at an interesting result.

3.1 The Basic Idea

One rarely has a credible loss function tied to specifics of a situation; rather, quadratic

loss is almost always invoked, purely for convenience. The insight of this section is that we

can take a more primitive approach, dispensing with loss functions, and still rank forecasts

(although, as we shall show, we are inescapably pulled back to a particular loss function).

We simply use e directly, and we rank by stochastic divergence of F (e) from F ∗(·), the unit

step function at 0. This amounts to ranking forecasts by the shaded area in Figure 2a,

A(e) = A−(e) + A+(e) =

∫ 0

−∞
F (e) de+

∫ ∞
0

(1− F (e)) de, (3)

where smaller is better.3 We call A(e) the stochastic error divergence (SED). In Figure 2b

we provide an example of two error distributions such that we prefer F1 to F2 under SED.

3.2 A Positive Result

We motivated SED as directly appealing and intuitive. It turns out, however, the SED is

intimately connected to one, and only one, tradtionally-invoked loss function. And it’s not

quadratic. We begin with a lemma and then proceed to the main result.

Lemma 3.1 Let x be a negative random variable such that E(|x|)) <∞.4 Then

E(x) = −
∫ 0

−∞
F (x)dx,

where F (x) is the cumulative distribution function of x.

3Note that in the symmetric case A(e) = 2
∫ 0

−∞ F (e) de.
4In yet another abuse of notation, throughout we use “x” to denote either a generic random variable or

its realization.
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(a) c.d.f. of e. Under the SED criterion, we prefer smaller A(e) = A−(e) +A+(e).

(b) Two forecast error distributions. Under the SED criterion, we prefer F1 to F2.

Figure 2: Stochastic Error Divergence (SED)

Proof Integrating by parts, we have∫ 0

−c
xf(x)dx = xF (x)

∣∣∣0
−c
−
∫ 0

−c
F (x)dx

= cF (−c)−
∫ 0

−c
F (x)dx.

As in Lemma 2.2, the first term goes to zero as c→ −∞, by Lemma 2.1.

The proof of Lemma 3.1 of course parallels that of Lemma 2.2. The only difference is that

Lemma 2.2 treated positive random variables, whereas Lemma 3.1 treats negative random

variables.

We now arrive at a positive result.
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Proposition 3.2 (Equivalence of Stochastic Error Divergence (SED) and Expected Absolute

Error Loss) For any forecast error e, with cumulative distribution function F (e) such that

E(|e|)) <∞, we have

A(e) =

∫ 0

−∞
F (e) de+

∫ ∞
0

[1− F (e)] d e = E(|e|). (4)

That is, SED equals expected absolute loss for any error distribution.

Proof 5

A(e) = A−(e) + A+(e)

=

∫ 0

−∞
F (e)de+

∫ ∞
0

(1− F (e))de

= −
∫ 0

−∞
ef(e)de+

∫ ∞
0

ef(e)de (by Lemma 3.1 forA− and Lemma 2.2 for A+)

=

∫ ∞
0

ef(−e)de+

∫ ∞
0

ef(e)de

=

∫ ∞
0

e(f(−e) + f(e))de

=

∫ ∞
−∞
|e|f(e)de

= E(|e|).

Hence, in a certain sense, “I don’t know anything about the loss function, but I’m comfortable

minimizing SED” is equivalent to “My loss function is absolute loss.”

4 Weighted Stochastic Error Divergence

In other circumstances, however, one may feel more along the lines of “I don’t know much

about the loss function, but I know that I dislike negative errors (say) more than positive.”

This leads us to the idea of a weighted SED (WSED) criterion Ã, given by a weighted sum

of A−(e) and A+(e).

5We provide an alternative proof of Proposition 3.2 in Appendix A.
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4.1 A Natural Generalization

In particular, let,

Ã = 2(1− τ)A− + 2τA+ = 2(1− τ)

∫ 0

−∞
F (e)de+ 2τ

∫ ∞
0

(1− F (e))de

where τ ∈ (0, 1).6 The following result is immediate.

Proposition 4.1 (Equivalence of Weighted Stochastic Error Divergence and Expected Lin-

Lin Error Loss) For any forecast error e, with cumulative distribution function F (e) such

that E(|e|)) <∞, we have

Ã(e) = 2(1− τ)

∫ 0

−∞
F (e) de+ 2τ

∫ ∞
0

[1− F (e)] d e = 2E(Lτ (e)), (5)

where Lτ (e) is the loss function

Lτ (e) =

(1− τ)|e|, e ≤ 0

τ |e|, e > 0,

and τ ∈ (0, 1).

Proof We have

Ã = 2(1− τ)

∫ 0

−∞
F (e)de+ 2τ

∫ ∞
0

(1− F (e))de

= 2(1− τ)

∫ 0

−∞
(−e)fe(e)de+ 2τ

∫ ∞
0

efe(e)de (by Lemmas 2.2 and 3.1)

= 2(1− τ)

∫
|e|1{e ≤ 0}fe(e)de+ 2τ

∫
|e|1{e > 0}fe(e)de

= 2

∫ [
(1− τ)|e|1{e ≤ 0}+ τ |e|1{e > 0}

]
fe(e)de

= 2E(Lτ (e)).

The loss function Lτ (e) appears in the forecasting literature as a convenient and simple

potentially asymmetric loss function. It is often called “lin-lin” loss (i.e., linear on each

side of the origin), and sometimes also called “check function” loss (again in reference to

6Note that when τ = 0.5, WSED Ã is just SED A.
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its shape).7 Importantly, it is the loss function underlying quantile regression; see Koenker

(2005).

Because WSED is twice expected lin-lin loss, we are led inescapably to the insight that

point forecast accuracy evaluation “without taking a stand” on the loss function (SED) or

“taking only a small stand” on the loss function (WSED), actually does map into point

forecast accuracy evaluation by expected absolute or expected lin-lin loss, respectively. The

primacy of lin-lin loss, and the leading case of absolute loss, emerges clearly.

4.2 Remarks

Several remarks are in order.

Remark 4.2 (WSED and stochastic dominance (SD)). Our work is related to, yet dis-

tinct from, that of Corradi and Swanson (2013), who propose tests for first-order stochastic

dominance (SD) of loss distributions, and hence also to earlier work on which Corradi and

Swanson build, such as Linton et al. (2005). The WSED and SD approaches are related in

at least two ways. First, and obviously, both are based on comparative properties of certain

c.d.f.’s. Second, and more centrally, both begin as attempts to make point forecast accuracy

rankings robust to specific choices of loss functions.

There is, however, a clear difference between SD and WSED, and hence between our

approach and that of Corradi and Swanson (2013). If SD holds (whether first- or higher-

order), it really does imply robustness to certain classes of loss functions. But in our view

SD criteria (again whether first- or higher-order) for forecast error loss distributions are so

restrictive as to be unlikely ever to hold, which renders SD “tests” – and certainly first-order

SD tests – of limited practical relevance for forecast evaluation.

WSED, in contrast, also begins as an attempts at loss-function robustness insofar as it

is motivated from first principles without reference to a loss function, but it winds up at

the doorstep of lin-lin loss. Indeed we have shown that the WSED criterion is the lin-lin

loss criterion! Hence, in contrast to SD which strives for robustness to loss function, WSED

ultimately embraces a loss function and is of immediate practical relevance. But it embraces

a particular loss function, lin-lin loss and its leading case of absolute error loss, which until

now has been something of a sideshow relative to the ubiquitous quadratic loss, thereby

strongly suggesting a change of emphasis toward lin-lin.

Remark 4.3 (WSED and optimal prediction under aymmetric loss). By Proposition 4.1,

7Christoffersen and Diebold (1996) and Christoffersen and Diebold (1997).
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the forecast that optimizes WSED is the forecast that optimizes lin-lin loss, Lτ (e). That is,

the WSED criterion leads directly and exclusively to lin-lin loss.

The important work of Patton and Timmermann (2007) suggests a different and fasci-

nating route that also leads directly and exclusively to lin-lin loss. Building on the work of

Christoffersen and Diebold (1997) on optimal prediction under asymmetric loss, they show

that if loss L(e) is homogeneous and the target variable y has no conditional moment depen-

dence beyond the conditional variance, then the L-optimal forecast is always a conditional

quantile of y. Hence under their conditions lin-lin loss is the only asymmetric loss function

of relevance.

Our results and those of Patton and Timmermann are highly complementary but very

different, not only in the perspective from which they are derived, but also in the results

themselves. If, for example, y displays conditional moment dynamics beyond second-order,

then the L-optimal forecast is generally not a conditional quantile (and characterizations

in such higher-order cases remain elusive), whereas the WSED-optimal forecast is always a

conditional quantile.

Remark 4.4 (WSED as an estimation criterion). WSED, which of course includes SED as

a special case, can be used as a forecast model estimation criterion. By Proposition 4.1, this

amounts to estimation using quantile regression, with the relevant quantile governed by τ .

When τ = 1/2, the quantile regression estimator collapses to the least absolute deviations

(LAD) estimator.

Remark 4.5 (WSED as a forecast combination criterion). Because the forecast combination

problem is a regression problem (Granger and Ramanathan (1984)), forecast combination

under WSED simply amounts to estimation of the combining equation using quantile regres-

sion, with the relevant quantile governed by τ .

5 Generalized Stochastic Error Divergence

As always let F (e) be the forecast error c.d.f., and let F ∗(e) be the unit-step function at

zero. Now consider the following generalized stochastic error divergence (GSED) measure:

D(F ∗, F ; p, w) =

∫
|F ∗(e)− F (e)|pw(e)de, (6)
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where p > 0. Our stochastic error divergence measures are of this form. When p = 1 and

w(x) = 1 ∀ x, we have SED, and when p = 1 and

w(x) =

2(1− τ), x < 0

2τ, x ≥ 0,

we have WSED.

The GSED representation facilitates comparisons of WSED to other possibilities that

emerge for alternative choices of p and/or w(·).

5.1 Connections Between WSED and Other Distance and Diver-

gence Measures

Several connections emerge. First, when p = 2 and w(x) = 1, D is the so-called “energy

distance,”8

E(F ∗, F ) =

∫
|F ∗(e)− F (e)|2 de.

We can decompose the energy distance as∫ ∞
−∞

[
F ∗(e)− F (e)

]2
de =

∫ [
F (e)(1− F ∗(e)) + (1− F (e))F ∗(e)

− F (e)(1− F (e))− F ∗(e)(1− F ∗(e))
]
de

=

∫ 0

−∞
F (e)de+

∫ ∞
0

[
1− F (e)

]
de−

∫ ∞
−∞

F (e)(1− F (e))de

= E (|e|)−
∫ ∞
−∞

F (e)(1− F (e))de,

(7)

where e and e′ are random variables independently and identically distributed with distri-

bution function F (·). Equation (7) is particularly interesting insofar as it shows that energy

distance is prominently related to expected absolute error loss, yet not exactly equal to it,

due to the adjustment term,
∫
F (e)(1− F (e))de. However, one can show that∫
F (e)(1− F (e))de =

1

2
E(|e− e′|),

8On energy distance see Székely and Rizzo (2005) and their recent survey Székely and Rizzo (2013), as
well as Gneiting and Raftery (2007).
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where e′ is a stochastic copy of e, revealing that the adjustment term is a measure of forecast

error variability.

Second, when p = 2 and w(e) = f(e), the density corresponding to F (e), D is Cramer-

von-Mises divergence,

CVM(F ∗, F ) =

∫
|F ∗(e)− F (e)|2 f(e)de. (8)

Note that the weighting function w(e) in Cramer-von-Mises divergence CVM(F ∗, F ) is dis-

tribution specific, w(e) = f(e).

We can decompose Cramer-von-Mises divergence as

CVM(F ∗, F ) =

∫
|F ∗(e)− F (e)|2 f(e)de

=

∫ [
F (e)(1− F ∗(e)) + (1− F (e))F ∗(e)

− F (e)(1− F (e))− F ∗(e)(1− F ∗(e))
]
f(e)de

=

∫
R−

F (e)f(e)de+

∫
R+

(1− F (e))f(e)de−
∫
R

F (e)(1− F (e))f(e)de

=

∫ F (0)

0

p dp+

∫ 1

F (0)

(1− p) dp−
∫ 1

0

p(1− p) dp (by change of variable, e = F−1(p))

= F (0)2 − F (0) +
1

3

≥ 1

12
.

Note that CVM(F ∗, F ) achieves its lower bound of 1/12 if and only if F (0) = 1/2, which

implies that, like SED, CVM(F ∗, F ) ranks forecasts according to expected absolute error.

5.2 A Complete Characterization

Equivalence of D(F ∗, F ) minimization and E(L(e)) minimization can actually be obtained

for a wide class of loss functions L(e). In particular, we have the following proposition.

Proposition 5.1 Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for e > 0

and dL(e)/de < 0 for e < 0, and suppose also that F (e) and L(e) satisfy F (e)L(e) →
0 as e→ −∞ and (1− F (e))L(e)→ 0 as e→∞. Then∫ ∞

−∞
|F ∗(e)− F (e)|

∣∣∣∣dL(e)

de

∣∣∣∣ de = E(L(e)).
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That is, minimization of GSED D(F ∗, F ; p, w) when p = 1 and w(e) = |dL(e)/de| corre-

sponds to minimization of expected loss E(L(e)).

Proof∫ ∞
−∞

∣∣F ∗(e)− F (e)
∣∣ ∣∣∣∣dL(e)

de

∣∣∣∣ de = −
∫ 0

−∞
F (e)

dL(e)

de
de+

∫ ∞
0

(1− F (e))
dL(e)

de
de

=

∫ 0

−∞
f(e)L(e)de+

∫ ∞
0

f(e)L(e)de

=

∫ ∞
−∞

f(e)L(e)de

= E[L(e)],

where we obtain the second line by integrating by parts and exploiting the the assumptions

on L(e) and F (e). In particular,∫ 0

−∞
F (e)

dL(e)

de
de = F (e)L(e)

∣∣∣0
−∞
−
∫ 0

−∞
f(e)L(e)de,

by integration by parts, but the first term is zero because F (e)L(e) → 0 as e → −∞, and

similarly, ∫ ∞
0

(1− F (e))
dL(e)

de
de = (1− F (e))L(e)

∣∣∣∞
0

+

∫ ∞
0

f(e)L(e)de,

again by integration by parts, and again the first term is zero because (1 − F (e))L(e) → 0

as e→∞.

We hasten to emphasize the key point, however, namely that the E(L(e)) minimizers that

match various D(F ∗, F ) minimizers generally correspond to non-standard and intractable

loss functions L(e) in all cases but the ones we have emphasized, namely WSED and its

leading case SED.

5.3 Remarks

Several additional remarks are in order.

Remark 5.1 (Kolmogorov-Smirnov distance and expected absolute error). Kolmogorov-

Smirnov distance is

KS(F ∗, F ) = sup
e
|F ∗(e)− F (e)| = max (F (0), 1− F (0)) .
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Like CVM(F ∗, F ), KS(F ∗, F ) achieves its lower bound at F (0) = 1/2. Hence KS(F ∗, F )

also ranks forecasts according to expected absolute error.

Remark 5.2 (Directional properties of CVM). Although CVM(F ∗, F ) is well-defined,

CVM(F, F ∗) is not, because

CVM(F, F ∗) =

∫
|F ∗(e)− F (e)|2 f ∗(e)de,

where f ∗(e) is Dirac’s delta.

Remark 5.3 (Comparative directional properties of Kullback-Leibler divergence)9. The

Kullback-Leibler divergence KL(F ∗, F ) between F ∗(e) is

KL(F ∗, F ) =

∫
log

(
f ∗(e)

f(e)

)
f ∗(e)de,

where f ∗(x) and f(x) are densities associated with distributions F ∗ and F . Unlike CVM(F ∗, F ),

KL(F ∗, F ) does not fit in our D(F ∗, F ) framework as it is ill-defined in both directions.

Remark 5.4 (Relationship between GSED and Elliott et al. (2005) loss). The GSED mea-

sure (6) resembles the Elliott et al. (2005) (ETK) loss function,

L(e; p, α) = |e|p (α + (1− 2α)I(e < 0)) .

However, it differs fundamentally in that GSED is based on (integrated) distributional di-

vergence,
∫

(F ∗ − F ), whereas ETK loss is based on the usual forecast error divergence,

(y− ŷ). Ultimately, ETK loss is a special case of GSED; corresponding to a particular choice

of GDED exponent p and GSED weighting function w(e), as per Proposition 5.1, as are all

L(e) loss functions that satisfy the regularity conditions of the proposition.

6 Conclusions and Directions for Future Research

We have proposed and explored several “stochastic error divergence” measures of point

forecast accuracy, based directly on the divergence between the forecast-error c.d.f., F (e),

and the unit step function at 0. Our results make clear that one can’t escape focus on

expected loss minimization, even when moving to stochastic divergence accuracy measures.

9There are of course many other distance/divergence measures, exploration of which is beyond the scope
of this paper. On Hellinger distance, for example, see Maasoumi (1993).
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Simultaneously, however, they sharply focus attention on a particular loss function, absolute

loss (and its lin-lin generalization), as opposed to the ubiquitous quadratic loss, or anything

else. Put bluntly, our message is that “expected absolute loss (and its lin-lin generalization)

is more important than you think.” (Or at least more important than you used to think.)

Several interesting directions for future research are apparent. One concerns multivariate

extensions, in which case it’s not clear how to define the unit step function at zero, F ∗(e).

Consider, for example, the bivariate case, in which the forecast error is e = (e1, e2)
′. It seems

clear that we want F ∗(e) = 0 when both errors are negative and F ∗(e) = 1 when both are

positive, but it’s not clear what to do when the signs diverge.

Another interesting direction for future research concerns the coherence of absolute- and

squared-error loss. We have implicitly argued for absolute-error loss (or its lin-lin generaliza-

tion). How important is the distinction between absolute-error loss and other loss functions?

In particular, under what conditions will absolute-error loss and the ubiquitous squared-error

loss agree? If, for example, the forecast error is Gaussian, e ∼ N (µ, σ2), then |e| follows the

folded normal distribution with mean

E(|e|) = σ
√

2/π exp

(
− µ2

2σ2

)
+ µ

[
1− 2Φ

(
−µ
σ

)]
.

Hence for unbiased forecasts (µ = 0) we have E(|e|) ∝ σ, so that absolute and quadratic

loss rankings are identical. In other cases, however, absolute and quadratic rankings diverge,

and it would be useful to have a complete characterization.
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Appendices

A Alternative Proof of Proposition 3.2

Here we supply a different and shorter, if less instructive, proof.

Proposition

E(|e|) =

∫ ∞
0

[1− F (e)] d e = A(e).

Proof

A(e) = −
∫ c

0

F−1(p)dp+

∫ 1

c

F−1(p)dp (where c = F (0))

=

∫ 0

−∞
−ef(e)de+

∫ ∞
0

ef(e)de (change of variables with p = F (e))

=

∫ ∞
−∞
|e|f(e)de

= E(|e|).
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