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Introduction

© Controversy between in-sample and OOS

© Considers forecasting with weak predictors

© Present paper highlights important effect of bagging
© Without bagging ordering is approximately:

@ In-sample + AIC
® Out-of-sample
© Split sample
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Introduction

© Controversy between in-sample and OOS

© Considers forecasting with weak predictors

© Present paper highlights important effect of bagging
© Without bagging ordering is approximately:

@ In-sample + AIC
® Out-of-sample
© Split sample

© With bagging, it's generally reversed

© With alternate form of bagging, can prove that OOS and SS
are dominated by bagging counterparts
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Setup

Regression Model:
ye = fB'xc + ut

© Kk regressors (k fixed)

® Elxix] = Lo = Iy

© u; IID, independent of x

® Local parametrization: 5 = T~2b (Inoue & Kilian (2006))
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Forecast Assessment

Forecast: y741 = A'x711.
© Unconditional MSPE
Elyrsa — Fxria)] = 0+ E (3= B)(B = )| + 0p(T7)

© First term is O(1) and same for all methods
® Second term is O(T 1)
© Normalized MSPE:

NMSPE = T(MSPE — %) = E | T(8 — B) (5 — B)



Hirano and Wright: Forecasting
LSetup and Procedures

Forecasting Procedures

With k regressors, there are 2% possible subsets.

© Big Model (OLS with all predictors)
® Small Model: 3 = 0.

© Positive-part James-Stein (shrinkage)
© Select model using AIC

© Out-of-sample forecasting

© Split-sample forecasting

© All methods with bagging
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Bagging

Bagging = Bootstrap Aggregation (Breiman, 1996)

© Draw a bootstrap sample {x; (), y; (i)} from the original data
{xt, yt}-
® Recompute estimator 3*(i).

© Repeat for many bootstrap samples (i = 1,...,L), average
and generate the forecast

© Bihlmann and Yu (2002): bagging smooths hard-threshold
estimators

® Inoue and Kilian (2008): application to forecasting CPI
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Theorem 2: Limiting Distributions of Estimators

® OLS: T2 =4 Y = N(b,0?)
® JS: TYV23 =4 Si(Y) = Yw(Y)
© AIC: TY23 =4 S5(Y) = Ywo(Y)
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Theorem 2: Limiting Distributions of Estimators

® OLS: T2 =4 Y = N(b,0?)
® JS: TYV23 =4 Si(Y) = Yw(Y)
© AIC: TY23 =4 S5(Y) = Ywo(Y)

® 00S: TY23 =4 S3(Y, Ug)
where Ug is a Brownian bridge independent of Y and b

® SS: TV23 =4 S4(Y, Ug)
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Representation of Partial Sums

All of the procedures we consider depend crucially on the partial
sum process (r € [0,1]): T~/ Z[tg XtYt
Theorem 1:
[T7]
T-1/2 thyt —q rY +oUg(r)
t=1

where Y ~ N(b,0?) and Ug is a Brownian bridge independent of
Y and b
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Adding Bagging Step

© Theorem 3: In the ith bootstrap step
7125 ML )y (i) =g rY + o Vi(r)

where V; are independent Brownian motions
(Park, 2002).
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Limiting Distributions of Estimators with Bagging
OLS TY23; =4 Y + Vi
JS: T1/25,' —d 51(Y, \/,)
AIC: TY25; =4 S (Y, Vi)

®© © © ©

00S: TYV/25; =4 S3(Y, V)

where V; is a Brownian motion independent of Y and b

©

SS: TY25; =4 Sa(Y, Vi)

© Repeating across different / and averaging means that all
estimators eliminate V; and are generalized shrinkage
estimators.
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Bagging Comments

® For OOS and SS, bagging replaces Ug with V; and then
eliminates by integration.

© Intuition: for SS, bagging randomizes over partitions of the
data = uses all obs for both model selection and estimation
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Simpler Representations with k =1

® AIC without bagging: TY23 —4 Y1(Y > v/20)
© SS without bagging: Z11(| 22| > \/2/70)
where 7y ~ N(b, Z-) L Zy ~ N(b,Z)

© AIC with bagging:
Y=Y O(2ZY) 400V ) 1 YOS ) o (22

© SS with bagging: Y — Yq;(M) + Yq)(M)
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Risk Reduction

® In the limit, OOS and SS are functionals of both Y = Y(1)
and U = Ug.

© But Y is sufficient.

© Marginalize out the random noise term U:
S(Y)=E[S(Y,U) | Y].
© By the Rao-Blackwell theorem,

MSPE(S, b) < MSPE(S,b) Vb
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Risk Reduction

© Calculations indicate strict risk reduction for at least some b.

© Hence OO0S and SS are asymptotically inadmissible.
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Risk Reduction

© Calculations indicate strict risk reduction for at least some b.
© Hence OO0S and SS are asymptotically inadmissible.
© Bagging is like Rao-Blackwellization wrt V instead of U.

© Might want to do Rao-Blackwellization or an alternative form
of bagging that achieves this.
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Alternative Form of Bagging

. . !
© All estimators are functions of x;x; and x;y; alone.

0 Let

) A
Zt = XY = XeXe3 + Xeer

and define the ith bootstrap draw of z as:
25 (i) = xex B+ Oc(i)xeer — TTIEL1604(i)xs e

where (i) is the “wild” term.
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Alternative Form of Bagging

. . !
© All estimators are functions of x;x; and x;y; alone.
0 Let
R
Zt = XeYt = XeXe[3 + Xeey

and define the ith bootstrap draw of z as:
25 (i) = xex B+ Oc(i)xeer — TTIEL1604(i)xs e

where (i) is the “wild” term.

© Theorem 4: Limiting distributions same as Theorem 2 but
with Y (r) = rY + oUg(r) replaced by rY + o Ug(r)
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Asymptotic Root NMSPE (k=1)

Asymptotic RMSE
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Asymptotic Root NMSPE (k=3)
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L Numerical Experiments
Dominance Relations (1 nonzero coefficient)
k 1 2 3 4 5 6
AIC v O0S
AIC v SS
AIC v AICB
AICv OOSB 0O0OSB OOSB 0OOSB 0OO0SB 0O0SB 0OOSB
AIC v SSB SSB SSB SSB
0O0S v SS
OO0S v AICB

O0Sv O0OSB 0O0OSB 0O0SB 0O0OSB 00SB 0OO0OSB 0O0SB
OO0S v SSB SSB SSB SSB SSB SSB SSB

SS v AICB
SS v OOSB
SS v SSB SSB SSB SSB SSB SSB SSB
AICB v OOSB O0SB 0OO0SB 00OSB 00SB 00SB
AICB v SSB SSB SSB SSB SSB

OOSB v SSB
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Dominance Relations (2 nonzero coefficients)

k 1 2 3 4 5 6
AIC v O0S
AIC v SS
AIC v AICB
AIC v O0OSB
AIC v SSB
0O0S v SS
00S v AICB
O0S v O0SB 0O0OSB 00SB 00SB 00SB 0O0SB 00SB
00S v SSB SSB SSB SSB SSB SSB SSB
SS v AICB
SS v O0SB
SS v SSB SSB SSB SSB SSB SSB SSB
AICB v O0OSB 0O0SB 00SB
AICB v SSB SSB SSB

OOSB v SSB
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Comparison of Bayes Risk

© Prior:

» Each regressor is included in the model with probability p.
» Conditional on inclusion, prior for that element of b is N(0, ¢).

© Can work out local asymptotic Bayes risk: limit of

E[(TY23 = b) (T3 — b)]
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Comparison of Bayes Risk

© Prior:

» Each regressor is included in the model with probability p.
» Conditional on inclusion, prior for that element of b is N(0, ¢).

© Can work out local asymptotic Bayes risk: limit of

E[(TY/23 — b)(T'/25 — b)]
© 00S/SS with bagging do well

© But BMA always does better, and can do much better
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h-step ahead forecasting

© Setup:
Yerh = B'xe + uy

® Serial correlation in vy could be exploited but isn't.
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h-step ahead forecasting

© Setup:
Yerh = B'xe + uy

® Serial correlation in vy could be exploited but isn't.

© Without bagging
T125 T s (Dye(i) =g rN(b, w?1) + wUg(r)
© With bagging

7125 e (1)t (i) —a rN(b,w?1) + o Vi(r)
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h-step ahead forecasting

© Could get bagging to "mimic” serial dependence in the data.
» Draw blocks of data of length that goes to infinity slowly.
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h-step ahead forecasting

© Could get bagging to "mimic” serial dependence in the data.
» Draw blocks of data of length that goes to infinity slowly.

© Easy to do Rao-Blackwellization with serial correlation
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Forecasting in a VAR

© A p-variable stationary VAR with k lags and intercept:
Yt = Bxt + &t

® Suppose that B = CT /2,

© Each model consists of a set of zero restrictions on B.
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Forecasting in a VAR

© A p-variable stationary VAR with k lags and intercept:
Yt = Bxt + &t

® Suppose that B = CT /2,
© Each model consists of a set of zero restrictions on B.
© All estimators depend on:

> T° IZ[Tixtxt —p rQu where Q. = E(x¢x;)

> 725y [rC 4 B(r)]
© Estimators other than OOS or SS are functions of

Y = C + B(1) alone

© 0O0S and SS are functions of Y and Ug(r).
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Extension to general likelihood framework

® Parameter 0 and likelihood /(0) = £]_;/:(0)
® True value is g = cT~1/2
© Model selection amounts to imposing zeros on 6

® Need T-1/2511(69) - B(r)
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Monte-Carlo Simulation

© Monte-Carlo simulation with Gaussian shocks and T = 100

© Evaluated normalized root mean square prediction error
/T x (MSPE — 1))
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Monte-Carlo Root NMSPE (k=1)

Root of Normalized MSPE
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Monte-Carlo Root NMSPE (k=3)
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Conclusion

© Representation highlights dependence of OOS and SS “noise”
© This can be eliminated by bagging
© Or by Rao-Blackwellization (alternative bagging)

© Standard and alternative bagging on OOS/SS compares
favorably with existing methods
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Recap (in haiku)

Out of sample is
Inadmissible, but the
Future's in the bag.
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