
A multi-country approach to forecasting output
growth using PMIs

Alexander Chudik
Federal Reserve Bank of Dallas, CAFE and CIMF

Valerie Grossman
Federal Reserve Bank of Dallas

Hashem Pesaran
University of Southern California, CAFE, USA, and Trinity College,

Cambridge, UK

8th ECB Workshop on Forecasting Techniques, European Central
Bank, June 13-14, 2014

The views in this paper are those of the authors and do not necessarily re�ect the views of the Federal Reserve Bank of Dallas or

the Federal Reserve System.



Introduction and contributions of this paper

I Global VAR (GVAR) models are used increasingly in empirical macro
and �nance literature and forecasting.

I In this paper, we establish conditions under which forecasts from a

GVAR model uniformly converge (as N,T
j! ∞) to infeasible

optimal forecasts in the case of data generated from a
factor-augmented in�nite-dimensional VAR model.

I We show that the presence of a strong unobserved common factor
can lead to an undetermined system.

I To solve this problem, we propose augmenting the GVAR with
additional equation(s) that proxy for the factors.

I In the empirical part, we investigate the information content of the
Purchasing Manager Indices (PMIs) for nowcasting and forecasting
of 48 countries�growth as well as separate aggregate categories.



Output (1st di¤erences of logs, �100, advanced economies)



Manufacturing PMIs (advanced economies)



Services PMIs (all economies)



Motivation for forecasting growth with PMIs

I PMIs are timely, available for a broad range of countries, and closely
watched by �nancial market participants as an important indicator
of economic activity.

I We examine the extent to which PMIs are useful in nowcasting and
forecasting individual country growths at di¤erent horizons.



An Overview of the Literature
Techniques for large datasets & the GVAR literature

I Methods for the analysis of large datasets can be classi�ed into
machine learning techniques (primarily IID observations) and time
series econometric techniques (also applicable to dependent
observations)

I Machine learning techniques
I classi�cation and regression trees
I penalized regressions (including Lasso and Ridge regressions)

I Econometric techniques
I Bayesian shrinkage techniques
I factor models
I spatiotemporal models, large-dimensional VARs and GVARs

I The GVAR approach was proposed by Pesaran, Schuermann and
Weiner (2004) and used in forecasting in a number of papers,
including Pesaran, Schuermann and Smith (2009), Ericsson and
Reisman (2012) and Garratt, Lee and Shields (2014). Chudik and
Pesaran (2014) provide a recent survey.



Nowcasting literature

I A recent survey of "nowcasting" (i.e., prediction of the present, the
near future and the recent past) in economics is provided by
Banbura, Giannone and Reichlin (2011) and Banbura et al. (2012).

I Three challenges in nowcasting and forecasting growth with PMIs:
I "jagged" or "ragged" edge problem
I mixed frequencies (GDP is quarterly, PMIs are monthly)
I large dimensionality: 95 predictors of output for each economy (48
output growths and 47 PMI indices)



I The literature has dealt with these challenges in a number of ways,
depending on whether the target variable and predictors are
modelled as in one system (for the purpose of a real time monitoring
exercise), or not.

I The most popular nowcasting model is a factor model estimated
with the use of a Kalman �lter and smoother (Evans, 2005,
Giannone, Reichlin and Small, 2008).

I Bridge equations (Trehan, 1989, Parigi and Schlitzer, 1995, Diron,
2008, among others) and MIDAS models (Ghysels et al., 2004 and
2007) have also been commonly used for nowcasting.

I We overcome the jagged edge problem by re-aligning each of the
series to achieve a balanced end of the sample, and then aggregate
monthly PMIs at a quarterly frequency.

I This allows us to apply any of the commonly used methods for
forecasting with a large number of predictors (we implement the
Lasso, Ridge, factor models, partial least squares and GVARs).
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Factor-augmented, large-dimensional VARs

I Consider the following covariance stationary factor-augmented VAR
model for N cross section units collected in the vector
yt = (y1t , y2t , ..., yNt )

0:

yt � γft = Φ (yt�1 � γft�1) + εt , (1)

ft = ρft�1 + vt ,

where γ is an N � 1 vector of factor loadings, ft is an unobserved
common factor, Φ is an N �N matrix of unknown coe¢ cients and
εt is an N � 1 vector of idiosyncratic shocks. It is assumed that εt
is independently distributed of vt , both are serially uncorrelated and
with zero means.

I Higher order lags/number of common factors could also be
considered. We abstract, without the loss of generality, also from
deterministic terms.



I A common alternative to (1) is a VAR model with factor error
structure, namely

yt = Φyt�1 + γft + εt . (2)

I Because the common factor ft is unobserved, it is unknown whether
(1) or (2) should be preferred. It is therefore important to develop
methods that are robust to the way the common factor is introduced
in the model.

I We proceed with both models below. We show that the common
factors can be in both cases approximated by cross-section averages,
but the main di¤erence between the two models is in the number of
lags of cross-section averages that are required for consistent
estimation and forecasting.



GVAR approach as a representation of large VARs

I Unknown parameters of models (1) and/or (2) cannot be estimated
due to the well-known curse of dimensionality.

I This problem has been typically addressed in the literature by either
resorting to a shrinkage of the parameter space (e.g., Large Bayesian
VARs), or to a shrinkage of the data (e.g., factor models).

I We are interested in imposing a su¢ cient structure on (1) and/or
(2) that would solve the dimensionality problem and allow consistent
estimation of unit-speci�c equations. To this end we follow Chudik
and Pesaran (2011, JoE) and impose the following assumptions.



Assumptions

Assumption 1 (Cross-sectionally weakly dependent idiosyncratic errors)
Idiosyncratic errors in εt follow the �spatial�or �network�model,
εt = Rηt , where the N �N matrix R has assumed to have bounded row
and column matrix norms (in N), and ηt � IID (0, IN ).
Assumption 2 (Unobserved common factor and its loadings)

a. (Model without factor) γi = 0 for all i = 1, 2, ...,N.

b. (Model with factor) The unobserved common factor is characterized
by the AR(1) model above with jρj < 1. The macro shock vt is
independently distributed of idiosyncratic errors, E (vt ) = 0,
E
�
v2t
�
= σ2v = 1� ρ2, and E (vtvt 0) = 0 for any t 6= t 0. The factor

loadings are independently and identically distributed with nonzero
mean γ 6= 0 and a �nite variance. In addition, the loadings are
independently distributed of vt and εt .



Assumption 3 (Covariance stationarity and bounded variances) There
exists a small positive constant ε such that kΦk < 1� ε, where kΦk
denotes the spectral norm of Φ.

Assumption 4 (No neighbors) There exists a (�nite) positive constant
K < ∞, which does not depend on N, and such that for any N 2 N,
where N denotes the set of natural numbers, we have

jφii j < K , for any i = 1, 2, ...,N

and ���φij ��� < K
N
, for any j 6= i , i , j = 1, 2, ...,N.



I Assumption 3 is stronger than the usual �nite-N covariance
stationarity assumption, which restricts the eigenvalues of Φ to lie
within the unit circle. Assumption A3 also ensures that the variance
of yit exists as N ! ∞. See Chudik and Pesaran (2011, JoE) for a
related discussion.

I Assumption 4 rules out any neighbors (with the exception of own
lags). This assumption can be relaxed, at the expense of
expositional clarity and more complex notations, without any
fundamental implications for the main results derived below.

I Following similar arguments as in Chudik and Pesaran (2011, JoE),
for model (1) we obtain

y t = w
0yt = w0γft +

∞

∑
`=0

Φ`εt�` = w
0γft +Op

�
N�1/2

�
,

for any weights w satisfying kwk∞ = maxi jwi j < K/N.



I If in addition ∑Ni=1 wi = 1, then w
0γ = γ+Op

�
N�1/2

�
, and we

obtain in the case of model (1), under Assumptions 1-4 (see Chudik
and Pesaran, 2011, JoE) the cross-sectionally augmented AR
speci�cations (CAAR)

yit = φii yi ,t�1 + bi0y t + bi1y t�1 + ζ it , for i 2 f1, 2, ...,Ng , (3)

where ζ it = εit +Op
�
N�1/2

�
, bi0 = bi1 = 0 under Assumption

2.a, and

bi0 =
γi
γ̄
, bi1 = �

φiiγi
γ̄
, under Assumption 2.b.

I Denote the corresponding least squares estimates of the unknown
coe¢ cients as bφii ,bbi0 and bbi1. Using these estimates for
i = 1, 2, ...,N and provided that matrix bG0 = IN � bb0w0, wherebb0 = �b̂10, b̂20, ..., b̂N0�0, is invertible, one could construct the
following GVAR model of yt :

yt = bGyt�1 + but , (4)

where but = bG�10 bζt ,bG = bG�10 bG1, bG1 = bΘ+ bb1w0, Θ is an N �N
diagonal matrix with elements bφii on the diagonal.



I In the case of model (2), we have

y t =
∞

∑
`=0

w0Φ`
�

γft�` +
` εt�`

�
= α (L) ft +Op

�
N�1/2

�
,

where the polynomial α (L) = ∑∞
`=0 w

0Φ`γL` depends on Φ, γ and
w (but we do not show this dependence explicitly to economize on
notations)

I Note that the coe¢ cients in the polynomial α (L) satisfy

jα`j =
���w0Φ`γ

��� � kwk 


Φ`



 kγk = O

h
(1� ε)`

i
and are thus

declining at an exponential rate.



I Assuming that a (L) = α�1 (L) exists and its coe¢ cients also
decline exponentially, we obtain

yit = φii yi ,t�1 + bi (L) y t + ζ it , for i 2 f1, 2, ...,Ng ,

where bi (L) =
�

γi +∑∞
`=0 φ0�iΦ

`γ
�

α�1 (L) is of in�nite order.

I Coe¢ cients in the above equations can be consistently estimated by
least squares with a suitable truncation lag p = p (T ) for
cross-section averages, see Chudik and Pesaran (2013).

I Estimated unit-speci�c equations can then be solved in a GVAR
model in the usual way. The di¤erence between (1) and (2) is in the
number of lags in the large N representations for the individual units.



Optimal forecasts for large VARs with unobserved factors
I Two approaches:

I (plug-in approach) derive infeasible forecasts conditional on factors
and then plug in estimates of the factors.

I Use Kalman �lter to derive forecasts conditional on observables
variables, but this requires additional assumptions and the full
knowledge of the model for the unobserved factors and the
covariance matrix of the errors, εt .

I Consider the information set It = fyt , yt�1, ..., ft , ft�1, ...g
I In the case of model (1), we have

yth = E (yt+h j It ) = Φhyt + ghft for h = 1, 2, ..., (5)

where gh =
�

ρhIN �Φh
�

γ.

I In the case of model (2) that features a factor error structure, we
obtain

yth = E (yt+h j It ) = Φhyt + g�hft , (6)

where g�h = ∑h�1`=0 ρh�`Φ`γ. Note that in both cases, the
conditional forecast yth in (5) and (6) does not depend on the
covariance of εt .



Large N representation of optimal forecasts

I In practice, the requirement of having full knowledge of an
underlying model is a disadvantage and methods that are robust to
certain variations in the assumptions of the model, such as the way
factors are introduced, are welcome.

I The optimal forecast yth in (5) and (6) depends on the unobserved
common factor and also on a large number of unknown parameters,

which cannot be estimated as N,T
j! ∞ due to the well-known

curse of dimensionality.
I We are interested in deriving a large N representation of the optimal
forecast that would depend only on observables and a �nite number
of unknown parameters, which can be consistently estimated. In
order to do so, we continue to maintain Assumptions 1-4.



I Using the expression for y t above, we obtain, after some algebra,
the following large N representation of optimal forecasts in the case
of model (1)

yith =

8<: φhii yit +Op
�
N�1/2

�
under A2.a

φhii yit +
�

ρh � φhii

�
γi
γ̄ y t +Op

�
N�1/2

�
under A2.b

.

I In the case of model (2) that features a factor error structure, we
obtain the following large N representation of optimal forecasts,

yith = φhii yit + chi (L) y t +Op
�
N�1/2

�
,

where the polynomial chi (L) = 0 under Assumption 2.a and
chi (L) =

�
g�hi +∑∞

s=0 ω0
hiΦ

sγLs
�

α�1 (L) under Assumption 2.b,
in which ωhi = Φh0eNi � φhiieNi .



GVAR approach to forecasting

I Comparing the large N representation for yith in the case of models
(1) and (2), we see that the latter features in�nite lag order,
whereas only contemporaneous values of cross-section averages are
included in the former.

I It is therefore important that proper consideration is given for the
selection of lags when forecasting.

I From now on, we focus on model (1), since the only di¤erence
between the two models manifests in the number of lags.

I It is not necessarily desirable to use GVAR model (4) for forecasting
under Assumption 2.b because G0 = IN�b0w0, in GVAR model (4),
is by construction rank de�cient.



The singular case

I To illustrate this rank de�ciency, consider w0G0:

w0G0 = w0
�
IN � b0w0

�
= w0 �

 
N

∑
i=1

wiγi
γ̄

!
w0

= w0 �w0 = 00. (7)

I The consequence of rank de�ciency of G0 is that the system of
CAAR equations (3) is undetermined.

I In general, it can be shown that when rank(G0) = N �m for some
m > 0, then the solution for yit depends on m arbitrary stochastic
processes. Therefore, the full rank condition, rank(G0) = N, is
necessary and su¢ cient for the GVAR solution to be uniquely
determined.



Dealing with the rank de�cient case

I If rank(G0) = N �m and m > 0, then the GVAR model would need
to be augmented by m additional equations in order for yt to be
uniquely determined.

I In the case of system (3), m = 1, and augmentation by one
additional equation is needed in order to obtain a unique solution for
yt . Di¤erent options could be considered for augmentation of (3).
We consider augmenting the set of conditional equations in (3) with
the following marginal equation for the cross-section averages:

y t = ρy t�1 + γvt +Op
�
N�1/2

�
, (8)

and we treat y t as a proxy for the (scaled) unobserved common
factor.



I Stacking (3) and (8), we obtain the following VAR model in
zt = (y0t , y t )

0:

A0zt = A1zt�1 + uzt +Op
�
N�1/2

�
, (9)

where uzt = (ε0t ,γvt )
0,

A0 =
�
IN �b0
0 1

�
, A1 =

�
Θ b1
0 ρ

�
,

and Θ is an N �N diagonal matrix with elements φii , for
i = 1, 2, ...,N, on the diagonal.

I The matrix A0 is (by construction) invertible. and let A = A�10 A1.



I Consider now the following forecast of yi ,t+h : ybith = e
0
N+1,iA

`zt ,
where A = A�10 A1, and eN+1,i is an N + 1 dimensional selection
vector that selects the i-th element.

I Under Assumptions 1, 2.b, and 3-4, we show

ybith = E (yi ,t+h j It ) +Op
�
N�1/2

�
which establishes the consistency of the forecast ybith de�ned above.

I Let ŷbith = e
0
N+1,i Â

`zt ,for i = 1, 2, ...,N and h = 1, 2, ..., where Â is
the least squares estimate of A using the CAAR regressions, (3). We
also establish that 


E (yt+h j It )� ŷbth


r L1! 0, (10)

N,T
j! ∞ such that N/T ! { for some 0 < { < ∞, under

Assumptions 1, 2.a or 2.b, and 3-4.



Monte Carlo experiments
DGP1: Weakly cross-sectionally dependent model.
yt = (y1t , y2t , ..., yNt ) for t = �M + 1, ..., 0, 1, 2, ...,T is generated as

yt � µy = Φ
�
yt�1 � µy

�
+ εt , (11)

with starting values y�M = 0. The �rst M = 100 observations are
discarded as burn-in replications.

I The matrix of coe¢ cients Φ is generated randomly and so that

o¤-diagonal elements are of order Op
�
N�1/2

�
. In particular,

φij = λiωij for i 6= j , where λi � IIDU (�0.2, 0.2) and
ωij = ςij/

�
∑Nj=1 ςij

�
,with ςij � IIDU (0, 1). The diagonal elements

are generated as φii � IIDU (0, 0.6). This establishes that
kΦk∞ < 0.8 and the DGP is stationary.

I The idiosyncratic errors, εt , are generated according to the following
SAR process:

εt = aεSεt + ηt , 0 < aε < 1, ηt � IIDN (0, IN )



I The N �N dimensional spatial weights matrix S is given by

S =

0BBBBBBB@

0 1 0 0 � � � 0
1
2 0 1

2 0 � � � 0
0 1

2 0 1
2 0

...
. . .

. . .
. . .

0 1
2 0 1

2
0 0 � � � 0 1 0

1CCCCCCCA
.

I To ensure that the idiosyncratic errors are weakly correlated, the
spatial autoregressive parameter, aε, must lie in the range [0, 1). We
set aε = 0.4.

I Individual elements of µy are set equal to µyi = κσy , where σy is
the average of standard deviations of yit . We set κ = 0.8 (in line
with our sample of output growth data).



DGP2: Model featuring unobserved common factor. yt and ft , for
t = �M + 1, ..., 0, 1, 2, ...,T , are generated according to

yt � γft � µy = Φ
�
yt�1 � γft�1 � µy

�
+ εt ,

ft = ρft�1 + vt

with the starting values y�M = 0, f�M = 0, and the �rst M = 100
observations are discarded as burn-in replications.

I The coe¢ cient matrix Φ, means µy , and the idiosyncratic errors in
εt are generated in the same way as in DGP1. We set ρ = 0.8 and

σ2v = 1� ρ2. Factor loadings are generated as γi � IIDN
�

γ, σ2γ

�
with γ = 1 and σγ = 0.2.

I Coe¢ cients and innovations are generated at the beginning of each
replication, and R = 104 replications were carried out for
N,T 2 f30, 50, 100, 200, 500g.



Average RMSFE across units

I We investigate the forecasting performance of a non-augmented
GVAR model

ŷaith = e
0
N ,i
bGhyt ,

and an augmented GVAR model ŷbTh = e
0
N+1,i Â

`zt for h = 1
(one-step-ahead forecasts).

I We compare these forecasts with their infeasible counterparts. In
particular, we compute root mean square forecast error di¤erences

RMSFE =

 
1
RN

N

∑
i=1

R

∑
r=1

n
ŷa(r )iT ,1 � E

h
y (r )i ,T+1

��� IT (r)io2
! 1

2

,

where the superscript (r) denotes individual replications. Similarly,
we compute RMSFE for forecasts based on a GVAR that is
augmented by an additional equation for CS averages.



Table 1: Root mean square forecast error di¤erence between feasible and
infeasible one-step-ahead forecasts in MC experiments

RMSFE : non-augmented GVAR RMSFE : augmented GVAR

(N,T) 30 50 100 200 30 50 100 200

DGP1: Without a common factor

30 0.42 0.31 0.21 0.15 0.40 0.30 0.20 0.14

50 0.42 0.31 0.21 0.15 0.40 0.30 0.20 0.14

200 0.41 0.30 0.21 0.15 0.40 0.30 0.20 0.14

DGP2: With an unobserved common factor

30 0.89 0.68 0.56 0.51 0.49 0.38 0.29 0.23

50 1.02 0.78 0.62 0.57 0.48 0.37 0.27 0.21

200 21.89 2.48 1.13 1.00 0.47 0.34 0.24 0.17



RMSFE of aggregate

I We also investigate the forecasting performance for the aggregate
variable ȳt :

RMSFEȳ =0@ 1
R

R

∑
r=1

 
1
N

N

∑
i=1

n
ŷa,(r )iT ,1 � E

h
y (r )i ,T+1

��� IT (r)io
!21A 1

2

,

where the superscript (r) denotes individual replications. Similarly,
we compute RMSFE of aggregate forecasts based on a GVAR that is
augmented by an additional equation for CS averages.



Table 2: Root mean square forecast error di¤erence between feasible and
infeasible one-step-ahead forecasts of aggregate variable in MC

experiments

RMSFEȳ : non-augmented GVAR RMSFEȳ : augmented GVAR

(N,T) 30 50 100 200 30 50 100 200

DGP1: Without a common factor

30 0.15 0.11 0.08 0.06 0.10 0.07 0.05 0.03

50 0.11 0.08 0.06 0.05 0.07 0.06 0.04 0.03

200 0.05 0.04 0.03 0.02 0.04 0.03 0.02 0.01

DGP2: With an unobserved common factor

30 0.75 0.58 0.50 0.48 0.26 0.22 0.19 0.17

50 0.87 0.68 0.56 0.54 0.23 0.20 0.16 0.14

200 20.02 2.34 1.08 0.96 0.20 0.15 0.12 0.09



Prediction of signs

I We investigate the fraction of correct positive predictions of the sign
of the next period forecasts:

P+ =
∑Rr=1 ∑Ni=1 I

�
ŷa,(r )iT ,1 > 0^ yi ,T+1 > 0

�
∑Rr=1 ∑Ni=1 I

�
ŷa,(r )iT ,1 > 0^ yi ,T+1 > 0

� ,
I Similarly, we also compute the fraction of correct positive predictions
based on a GVAR that is augmented by an additional equation for
CS averages.

I We investigate the fraction of correct negative predictions of the
sign of the next period forecasts, denoted by P�.



Table 3: Fraction of correctly predicted positive signs of the next period
forecasts.

P+: non-augmented GVAR P+: augmented GVAR

(N,T) 30 50 100 200 30 50 100 200

DGP1: Without a common factor

P+ for infeasible optimal forecast is 0.99.

30 0.96 0.98 0.98 0.98 0.96 0.98 0.98 0.99

50 0.96 0.98 0.98 0.98 0.97 0.98 0.98 0.98

200 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.98

DGP2: With an unobserved common factor

P+ for infeasible optimal forecast is 0.96.

30 0.91 0.93 0.94 0.94 0.95 0.95 0.96 0.96

50 0.89 0.92 0.93 0.94 0.94 0.95 0.96 0.96

200 0.81 0.84 0.86 0.87 0.94 0.95 0.96 0.96



Table 4: Fraction of correctly predicted negative signs of the next period
forecasts.

P�: non-augmented GVAR P�: augmented GVAR

(N,T) 30 50 100 200 30 50 100 200

DGP1: Without a common factor

P� for infeasible optimal forecast is 0.08.

30 0.12 0.09 0.09 0.08 0.11 0.09 0.09 0.08

50 0.11 0.10 0.08 0.08 0.10 0.09 0.08 0.08

200 0.11 0.09 0.08 0.08 0.11 0.09 0.08 0.08

DGP2: With an unobserved common factor

P� for infeasible optimal forecast is 0.25.

30 0.30 0.29 0.27 0.27 0.26 0.27 0.23 0.24

50 0.33 0.30 0.27 0.26 0.28 0.25 0.25 0.23

200 0.38 0.33 0.35 0.33 0.28 0.25 0.26 0.24



Nowcasting and forecasting global growth

We investigate the information content of PMIs for forecasting real GDP
growth of 48 individual economies across the globe.
PMI data

I PMIs are reported at a monthly frequency, are seasonally adjusted,
and are reported as di¤usion indices, in which a number greater than
50 indicates an expansion, and a number below 50 indicates a
contraction.

I We have two types of PMIs: manufacturing PMIs and services
PMIs. PMIs are not available for all countries in our dataset, and
the start and end dates of the available data sets di¤er across
countries. We have manufacturing PMI data on 34 countries, which
represent 85% of world output. Country coverage of services PMI is
much less comprehensive with data being available only for 13 of the
48 countries in our sample - also services PMI data goes to 1999M1
only in the case of 5 countries.

I PMIs are released in a timely manner, shortly after the reporting
period.



Aggregation of PMI data

I Let us denote monthly manufacturing PMI index in country i and
monthly period ` as ni `. (We use subscript t for quarterly periods.)

I We consider two ways of aggregating monthly PMI series into
quarterly observations.

I Sequential sampling : For a given month m = 1, 2, 3, we de�ne

n̄s ,mit = ni ,3(t�1)+m . (12)

This gives us three sequentially sampled quarterly series. We use the
latest available monthly observation in the regressions.

I Temporal aggregation: We use the rolling moving average

n̄a,mit =
�
ni ,3(t�1)+m + ni ,3(t�1)+m�1 + ni ,3(t�1)+m�2

�
/3, (13)

where as before m = 1, 2, 3 is the chosen month of a quarter, giving
us three di¤erent temporally aggregated series. As in the case of
sequential sampling, we select the latest available moving average at
the time of forecasting.



I Output data
I We have compiled a panel of quarterly data on real output covering
48 countries representing 92% of world output. We chose the
starting period to be 1998Q4, for which output data for all 48
countries is available and at the same time we also have a good
country coverage for the PMIs. The latest available observation on
output is 2013Q2. Output data is seasonally adjusted, most series
by the source.

I Our data is pseudo-real time, since no truly real-time datasets seem
to be available for the majority of economies in our sample.

I Output data are released with a considerable lag (from about 100
days from the beginning of the reporting quarter to about 200 days).



Forecasting procedures

I Univariate benchmarks:
I Random walk (RW) benchmark (no change in growth)
I Autoregressive (AR) benchmark model of order 1 (forecasts are
computed in direct way)

I Domestic PMI-augmented AR benchmark model (one lag)

I Data-rich methods: Output in each country is predicted with the
available output data (both home and foreign) and PMIs.

I Lasso regression (with 7 di¤erent options for the selection of the
penalty parameter λ by cross-validation)

I Ridge regression (with 7 di¤erent options for the selection of the
shrinkage parameter λ by cross-validation)

I Factor model (with 1, 2, 3, 4, 5 factors from preditor variables)
I Factor-augmented AR model (with 1, 2, 3, 4, 5 factors)
I Partial Least Squares (PLS, due to Herman Wold) regression (with
1, 2, 3, 4, 5 factors from both the preditor and target variables)

I GVAR models (standard GVAR and augmented GVAR)



I We consider 7 di¤erent cross-validation options for the selection of
the penalty/shrinkage parameter in the case of Lasso and Ridge
regressions.

I We also apply a Ridge shrinkage technique to estimate
country-speci�c models in the GVAR with the penalty parameter
estimated using cross validation.

I Each method is computed with either temporally aggregated PMI
data, or sequentially sampled data.

I Di¤erent choices for the aggregation of monthly PMI data, the
penalty/shrinkage parameter λ and the number of factors give us 64
individual data-rich forecasting models in total.



Nowcasting in the presence of structural breaks and
combination of forecasts across models

I It is widely recognized that structural breaks have important
consequences for forecasting of macroeconomic variables (see for
instance Clements and Hendry, 1999 and 2006, and Rossi, 2006)

I There are several ways of dealing with breaks in forecasting in
macroeconomics and �nance. The conventional approach would be
to estimate the discrete break points using one of the numerous
statistical procedures developed in the literature and then to
construct forecasts based on post-break periods. However, estimates
of breaks are inherently uncertain, and, as emphasized by Pesaran
and Timmermann (2007), the use of pre-break data, despite biasing
the forecasts, can still contribute to lowering RMSFE signi�cantly.



I Another way is to weight observations to deal with breaks. A
prominent example is exponential smoothing by Holt (1957) and
Brown (1959), and the optimal weights by Pesaran, Pick and
Pranovich (2013). An alternative approach to weighting
observations in an optimal way is to combine forecasts across
di¤erent observation windows, as proposed by Pesaran and
Timmermann (2007) with further results provided by Pesaran and
Pick (2011). This idea has been fruitfully utilized in a number of
applications (see for instance Assenmacher-Wesche and Pesaran,
2008, Pesaran, Schuermann and Smith, 2009, and Schrimpf and
Wang, 2010) and do not require any knowledge about breaks.



I We utilize a combination of forecasts across di¤erent estimation
windows. We choose the minimum window size Wmin = 20 time
periods, and consider mw = 5 estimation windows. For each of the
nowcasting methods, we compute the corresponding AveW forecast
constructed as an arithmetic average of forecasts based on the mw
estimation windows.

I We also consider a forecast combination across di¤erent models. We
compute the AveM forecast based on the simple arithmetic average
of all 64 data-rich methods.

I Finally, we also compute the double average AveMAveW model by
averaging 64 individual AveW data-rich forecasts.



Table 5: RMSFE of individual methods: World output, h = 0,m = 1

Evaluating period: Subsample A Subsample B Full sample
06Q1-08Q4 09Q1-13Q3 06Q1-13Q3

1. RW 0.966 0.517 0.753
2. AR 1.009 0.409 0.743
3. PMI-AR 0.836 0.358 0.621
4. Lasso 0.909 0.267 0.642
5. Ridge 0.747 0.200 0.523
6. FM 0.766 0.284 0.556
7. FAR 0.743 0.293 0.544
8. PLS 0.722 0.197 0.507
9. GVAR 0.797 0.427 0.622
10. augmented GVAR 0.758 0.282 0.551
AveM (4-10) 0.755 0.204 0.530
AveMAveW 0.890 0.233 0.623



Table 6: RMSFE of individual methods: World output, h = 0,m = 2

Evaluating period: Subsample A Subsample B Full sample
06Q1-08Q4 09Q1-13Q3 06Q1-13Q3

1. RW 0.933 0.260 0.656
2. AR 1.005 0.282 0.707
3. PMI-AR 0.831 0.296 0.600
4. Lasso 0.933 0.230 0.650
5. Ridge 0.867 0.207 0.602
6. FM 0.968 0.307 0.689
7. FAR 0.978 0.285 0.690
8. PLS 0.852 0.212 0.594
9. GVAR 0.783 0.312 0.574
10. augmented GVAR 0.707 0.267 0.515
AveM (4-10) 0.870 0.206 0.604
AveMAveW 0.946 0.212 0.655



Table 7: RMSFE of individual methods: World output, h = 0,m = 3

Evaluating period: Subsample A Subsample B Full sample
06Q1-08Q4 09Q1-13Q3 06Q1-13Q3

1. RW 0.926 0.257 0.651
2. AR 1.003 0.274 0.704
3. PMI-AR 0.804 0.271 0.576
4. Lasso 0.827 0.233 0.582
5. Ridge 0.671 0.266 0.492
6. FM 0.688 0.232 0.493
7. FAR 0.682 0.221 0.487
8. PLS 0.618 0.295 0.469
9. GVAR 0.765 0.288 0.556
10. augmented GVAR 0.788 0.256 0.563
AveM (4-10) 0.690 0.234 0.495
AveMAveW 0.725 0.235 0.517



RMSFE deteriorates as horizon increases

(RMSFE of global growth forecasts is computed using 06Q1-13Q3
evaluating period)



Augmented GVAR tends to outperform standard GVAR

Average and median RMSFE of the GVAR model relative to the
augmented GVAR model for di¤erent horizons

Averages and medians are computed from RMSFEs across 48 countries in the
sample, based on the full 2006Q1-2013Q3 evaluating period.



Relative performance of AveM ( h=0,m=1)

Number of methods (y-axis) outperformed by AveM (light/green bars)
and underperformed by AveM (dark/red bars) across countries (x-axis);

h = 0,m = 1
There are 68 individual methods in total on the y-axis (4 benchmarks and 64
data-rich methods). The forecasting performance is measured by RMSFE based

on the full 2006Q1-2013Q3 evaluating period.



PMIs improve growth forecasts substantially, but only for
horizon h=0,1

.

Average and median (across methods) of RMSFEs of global growth
forecasts relative to the model without PMIs



Conclusions
I This paper shows that the presence of unobserved common factors
can lead to an undetermined GVAR system.

I To solve this problem, we propose augmenting the GVAR with
additional proxy equations for the unobserved factors and establish
that such augmentation can produce forecasts that converge to
infeasible optimal forecasts as the panel dimensions expand at
similar rates.

I We empirically investigates the information content of PMIs for
nowcasting and forecasting output growth across 48 countries using
a variety of data-rich methods.

I We �nd that the augmented GVAR tends to outperform the
standard GVAR model. We also �nd that PMIs substantially
improve nowcasts of growth for horizon h = 0 (but not for higher
horizons) - gaining about 23% reduction in the RMSE compared to
models without PMI data.

I This is still a work in progress and we plan to consider techniques
that down-weight observations as a way of dealing with the
structural breaks - we shall also consider other forecast evaluation
criteria to check the robustness of our conclusions.
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