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1 Introduction

Empirical research generally avoids the direct use of mixed frequency data by either first aggregating

higher frequency series and then performing estimation and testing at the low frequency common

across the series, or neglecting the low frequency data and working only on the high frequency series.

The literature on large scale factor models is no exception to this practice, see e.g. Forni and Reichlin

(1998), Stock and Watson (2002) and Stock and Watson (2010).

A number of mixed frequency factor models have been proposed in the literature, although they

exclusively rely on small cross-sections. See for example, Mariano and Murasawa (2003), Nunes

(2005), Aruoba, Diebold and Scotti (2009), Frale and Monteforte (2010), Marcellino and Schumacher

(2010) and Banbura and Rünstler (2011), among others.

The purpose of this paper is to propose large scale mixed frequency factor models in the spirit of

Bai and Ng (2002), Bai (2003), Bai and Ng (2006). We rely on the recent work on mixed frequency

VAR models, in particular Ghysels (2012) to formulate such a model and its associated estimators. To

study the large sample properties of a principal component estimation procedure, we first discuss the

conditions which allow us to identify low and high frequency factors separately. The identification

conditions complement those of Anderson et al. (2012) who study the identifiability of an underlying

high frequency multivariate AR system from mixed frequency observations. Identifiability guaran-

tees that the model parameters can be estimated consistently from mixed frequency data. We extend

this analysis to mixed frequency factor models. Under suitable regularity conditions, the factors and

loadings can be estimated via an iterative procedure which consists of estimating respectively princi-

pal components from the cross-section of high frequency data and the principal components obtained

from a panel of low frequency series projected onto the high frequency factors.

An empirical application revisits the analysis of Foerster, Sarte, and Watson (2011) who use fac-

tor analytic methods to decompose industrial production (IP) into components arising from aggregate

shocks and idiosyncratic sector-specific shocks. Foerster, Sarte, and Watson (2011) focus exclusively

on the industrial production sectors of the US economy. Yet, IP has featured steady decline as a share

of US output over the past 30 years. The US economy has become more of a service sector economy.

Contrary to IP, we do not have monthly or quarterly data about the cross-section of US output across

non-IP sectors, but we do on an annual basis. The US Bureau of Economic Analysis provides GDP
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by industry - not only IP sectors - annually. We identify two factors in a mixed frequency approxi-

mate factor model, with one being a low frequency factor pertaining to non-IP sectors. We re-examine

whether the common factors reflect sectoral shocks that have propagated by way of input-output link-

ages between service sectors and manufacturing. Hence, our analysis completes an important part

missing in the original study as it omitted a major ingredient of US economic activity. A structural

factor analysis indicates that both low and high frequency aggregate shocks continue to be the domi-

nant source of variation in the US economy. The propagation mechanism are very different, however,

from those identified by Foerster, Sarte, and Watson (2011).

2 The model

2.1 Mixed frequency factor structure

Let t = 1, 2, ..., T be the low frequency (LF) time units. Each period (t − 1, t] is divided into m

subperiods with high frequency (HF) dates t − 1 + j/m, with j = 1, ...,m. For expository purpose,

we present the model and the estimators in a simplified framework in which the low frequency periods

are divided into two high frequency subperiods, i.e. we set m = 2. 2 Let x1,i,t and x2,i,t, for i =

1, ..., NH , be the consecutive high-frequency observations at t − 1/2 and t, respectively, and yi,t,

with i = 1, ..., NL, the low-frequency observations at t. These observations are gathered into the

NH-dimensional vectors x1,t, x2,t, and the NL-dimensional vector yt, respectively. We assume the

following linear factor structure for the stacked vector of observations:
x1,t

x2,t

yt

 =


Λ 0 ∆1

0 Λ ∆2

Ω1 Ω2 B



f1,t

f2,t

gt

+


ε1,t

ε2,t

ut

 . (1)

The factor structure involves two types of unobservable factors with different speeds. The first factor

evolves at high frequency, and the values for subperiods 1 and 2 are denoted by f1,t and f2,t, respec-

tively. The slow factor gt evolves at low frequency. Both types of factors can be multidimensional: the

unobservable factor vectors f1,t, f2,t have dimension KH , and the unobservable factor vector gt has di-

2The model with m = 4 high-frequency subperiods, used in the empirical application, is detailed in Appendix D.
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mension KL. In equation (1), the high frequency observations load on the high frequency factor of the

same half-period via loading matrix Λ, and on the low frequency factor via loading matrices ∆1 and

∆2. The low frequency observations load on the high and low frequency factors via loading matrices

Ω1, Ω2 and B, respectively. The loadings matrix Λ can feature a block structure to accommodate high

frequency factors that are specific to subsets of the high frequency series. A schematic representation

of the factor model is provided in Figure 1.

We assume that the loadings matrices are such that Λ′Λ/NH → ΣΛ, as NH → ∞, B′B/NL →

ΣB, as NL → ∞, where ΣΛ and ΣB are positive definite matrices. Moreover, the idiosyncratic

shocks vectors ε1,t, ε2,t and ut satisfy weak cross-sectional and serial dependence assumptions, and

are assumed to be weakly correlated with the latent factors.

When KH = 0, i.e. there is no high frequency factor, the specification in equation (1) reduces to a

low frequency factor model with vector of observables (x′1,t, x
′
2,t, y

′
t)
′ and factor gt, for t = 1, 2..., T .

When KL = 0, i.e. there is no low frequency factor, and Ω1 = Ω2 = 0, the specification in equation

(1) reduces to a pure HF factor model, with observations xτ and factor fτ for τ = 1/2, 1, ..., T , where

xτ = x1,t and fτ = f1,t for τ = t − 1/2, and xτ = x2,t and fτ = f2,t for τ = t and t = 1, 2, ..., T .

Such factor specifications are considered in e.g. Stock and Watson (2002), Bai and Ng (2002) and

Bai (2003) without explicit modeling of the factor dynamics, or in Forni, Hallin, Lippi, and Reichlin

(2000) with explicit modeling of the factor dynamics.

As usual in latent factor models, the distribution of the factors can be normalized. First, we can

assume orthogonality between (f1,t, f2,t) and gt. Indeed, if orthogonality does not apply in a given rep-

resentation of the model, factor f1,t can be written as the orthogonal projection on gt plus a projection

residual, i.e. f1,t = C1gt + f̃1,t, where C1 = Cov(f1,t, gt)V (gt)
−1, and similarly f2,t = C2gt + f̃2,t.

Then, by plugging these equations into the model, the structure is maintained if we use f̃1,t, f̃2,t and gt

as the new factors. Second, factors f1,t, f2,t and gt can be assumed to be zero-mean and standardized.

Thus:

V


f1,t

f2,t

gt

 =


IKH

Φ 0

Φ′ IKH
0

0 0 IKL

 , (2)

where Φ is the covariance between f1,t and f2,t.
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2.2 Factor dynamics

We complete the model specification by assuming a mixed frequency stationary Vector Autoregressive

(VAR) model for the stacked vector of factors (see Ghysels (2012)). The factor dynamics is given by

the following stationary structural VAR(1) model:
IKH

0 0

−RH IKH
0

0 0 IKL



f1,t

f2,t

gt

 =


0 RH A1

0 0 A2

M1 M2 RL



f1,t−1

f2,t−1

gt−1

+


v1,t

v2,t

wt

 , (3)

where (v′1,t, v
′
2,t, w

′
t)
′ is a multivariate white noise process with mean 0 and variance-covariance matrix:

Σ =


ΣH 0 ΣHL,1

ΣH ΣHL,2

ΣL

 . (4)

The model accommodates coupled autoregressive dynamics for the factors at different frequencies.

This coupling is induced by the sub-blocks of coefficients A1, A2, M1, M2 in the structural autore-

gressive matrix, and the contemporaneous correlation of factor innovations at different frequencies

ΣHL,1 and ΣHL,2. When either KH = 0 or KL = 0, equation (3) implies that the latent factor fol-

lows a VAR(1) model in low or high frequency, respectively. On the other hand, if A1, A2, M1, M2

and ΣHL,1, ΣHL,2 are zero matrices, the high frequency and low frequency factors follow uncorrelated

VAR(1) processes.

The parameters in the factor dynamics are constrained such that the sub-blocks restrictions on the

unconditional variance-covariance matrix in equation (2) hold. These restrictions, derived in Appendix

A, imply that each of the non-zero elements of the variance-covariance matrix Σ of the innovations,

and the autocovariance matrix Φ of the high frequency factor, can be expressed in terms of parameter

matrices RH , RL, A1, A2, M1 and M2 in the structural VAR(1) model (see Equations (A.9)-(A.14) in

Appendix A). These restrictions also imply that parameters RH , A1 and A2 must satisfy the following

matrix equation:

A1A
′
1 −RHA1A

′
2 − A1A

′
2R
′
H − A2A

′
2 = 0. (5)
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In Appendix A we also derive the stationarity conditions for the factor process.

3 Identification

In standard linear latent factor models, the normalization induced by an identity factor variance-

covariance matrix identifies the factor process up to a rotation (and change of signs). Let us now

show that, under suitable identification conditions, the rotation invariance of model (1) - (2) allows

only for separate rotations among the components of f1,t, among those of f2,t, and among those of

gt. Moreover, the rotations of f1,t and f2,t are the same. Thus, the rotation invariance of model (1) -

(2) maintains the interpretation of high frequency and low frequency factors, and the fact that f1,t and

f2,t are consecutive observations of the same process. More formally, let us consider the following

transformation of the stacked factor process:
f1,t

f2,t

gt

 =


A11 A12 A13

A21 A22 A23

A31 A32 A33



f̃1,t

f̃2,t

g̃t

 (6)

where (f̃ ′1,t, f̃
′
2,t, g̃

′
t)
′ is the transformed stacked factor vector, and the block matrix A = (Aij) is non-

singular.

Definition 1. The model is identifiable if:

the data x1,t, x2,t and yt satisfy a factor model of the same type as (1) and (2) with (f ′1,t, f
′
2,t, g

′
t)
′

replaced by (f̃ ′1,t, f̃
′
2,t, g̃

′
t)
′ if, and only if, matrix A is a block-diagonal orthogonal matrix, with

A11 = A22.

For the proof of identification, we distinguish two situations regarding the full-rank nature of the

loading matrices.
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3.1 Identification under full-rank conditions

Proposition 1. Assume that matrix Λ is full column rank and that

either matrix [Λ
... ∆1], or matrix [Λ

... ∆2], is full column rank (for NH large enough). (7)

Then, the model is identifiable.

The proof of Proposition 1 is given in Appendix B. The full-rank condition for the loadings matrix

is a standard assumption in linear factor models (see e.g. Assumption B in Bai and Ng (2002) and Bai

(2003)). In Proposition 1, it is enough that the full-rank condition applies to at least one of the high

frequency panels.

3.2 Identification with reduced-rank loading matrices

When the loading matrices [Λ
... ∆1] and [Λ

... ∆2] in the DGP are both reduced-rank, we cannot apply

Proposition 1 to show identification. This situation applies for instance when the high frequency data

do not load on the low frequency factors. We maintain the hypothesis that matrix Λ is full-rank (for

NH large enough), and focus on the case of a single low frequency factor, i.e. KL = 1. Then, a

reduced-rank problem occurs if both vectors ∆1 and ∆2 are spanned by the columns of matrix Λ, that

is

∆1 = Λd1, and ∆2 = Λd2, (8)

for some vectors d1 and d2. Then, using the tranformation in Equation (6) the model can be written as:
x1,t

x2,t

yt

 =


Λ̃ 0 0

0 Λ̃ 0

Ω̃1 Ω̃2 B̃



f̃1,t

f̃2,t

g̃t

+


ε1,t

ε2,t

ut

 , (9)

where the transformed factors
f̃1,t = (IKH

+ d1d
′
1)−1/2(f1,t + d1gt)

f̃2,t = (IKH
+ d2d

′
2)−1/2(f2,t + d2gt)

g̃ = (1 + d′1d1 + d′2d2 + 2d′1Φd2)−1/2(gt − d′1f1,t − d′2f2,t)

, (10)
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satisfy the normalization restriction (2) with a transformed autocovariance matrix Φ̃, and Λ̃, B̃, Ω̃1 and

Ω̃2 are transformed matrices of loadings. Thus, the model can be rewritten as a model without the

effect of the low frequency factor on the high frequency observations, i.e. ∆̃1 = ∆̃2 = 0, by suitably

redefining the high and low frequency factors. To eliminate this multiplicity of representations, we

introduce the following restriction:

Assumption 1. Let KL = 1. If vectors ∆1 and ∆2 are spanned by Λ, then ∆1 = ∆2 = 0.

The next Proposition shows that this identification condition is sufficient to identify the model.

Proposition 2. Let KL = 1 and ∆1 = ∆2 = 0 in the DGP. Then, the model is identifiable.

3.3 Normalization of factor loadings

When the model is identifiable in the sense of Definition 1, we can eliminate the rotation invariance

of high frequency and low frequency factors as in standard latent factor models (see, e.g., Bai and Ng

(2013) for a thorough discussion of identification in latent factor models). In this paper we impose the

diagonality of the variance-covariance matrices of the loadings:

ΣΛ = diag(σ2
λ,k), ΣB = diag(σ2

b,k).

Then, the high frequency and low frequency factor processes are identifiable up to a change of signs.

4 Estimation

4.1 The estimators of the factor values

The estimates of the factor values are obtained by an iterative estimation procedure. At each iteration

the HF and LF factors are estimated in two separate steps by Principal Component Analysis (PCA)

applied to suitable matrices of HF and LF residuals. The main idea is that from the model in equation

(1) residuals xj,t − ∆jgt satisfy a factor model with factor fj,t in high frequency, and residuals yt −

Ω1f1,t − Ω2f2,t satisfy a factor model with factor gt in low frequency.

The iteration p consists in the following two steps:
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1. Define Ĝ(p−1) = [g̃1, ..., g̃T ]′ as the (T × KL) matrix of estimated LF factors obtained in

the previous iteration. Regress each sub-panel of the HF observations on Ĝ(p−1) to obtain the

estimated loadings matrices ∆̂1 and ∆̂2, and the residuals:

ξ̂j,t = xj,t − ∆̂j g̃t , j = 1, 2 .

Collecting the residuals in the (2T ×NH) matrix:

Ξ̂ = [ξ̂1,1, ξ̂2,1, ..., ξ̂1,T , ξ̂2,T ]′,

the (2T ×KH) matrix F̂ (p) = [f̂1,1, f̂2,1, ..., f̂1,T , f̂2,T ]′ of estimated HF factor values is obtained

by PCA:

(
1

2NHT
Ξ̂Ξ̂′
)
F̂ (p) = F̂ (p)V̂F , (11)

where V̂F is the diagonal matrix of the eigenvalues. The estimated HF loadings matrix Λ̂ is

obtained from the high frequency least squares regression of xτ on factor f̂τ for τ = 1/2, 1, ..., T ,

where xτ = x1,t and f̂τ = f̂1,t for τ = t − 1/2, and xτ = x2,t and fτ = f̂2,t for τ = t and

t = 1, 2, ..., T .

2. Define:

F̂ ∗(p) =

[
F̂

(p)
1

... F̂ (p)
2

]
=


f̂ ′1,1 f̂ ′2,1

...
...

f̂ ′1,T f̂ ′2,T

 ,

as the (T × 2KH) matrix of estimated HF factors obtained in the previous step, where the factor

values of the two subperiods are stacked horizontally. Regress the LF observations y on F̂ ∗(p) to

obtain the (T ×NL) matrix of residuals:

Ψ̂ = [ψ̂1, ..., ψ̂T ]′
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where:

ψ̂t = yt − Ω̂1f̂1,t − Ω̂2f̂2,t, t = 1, ..., T

with Ω̂1 and Ω̂2 being the matrices of estimated loadings. The estimated LF factors Ĝ(p) =

[ĝ1, ..., ĝT ]′ are obtained performing PCA:

(
1

NLT
Ψ̂Ψ̂′

)
Ĝ(p) = Ĝ(p)V̂G, (12)

where V̂G is the diagonal matrix of the eigenvalues. The estimated LF loadings matrix B̂ is

obtained from the low frequency least squares regression of yt on ĝt. By construction, the

estimated factors ĝt are orthogonal to (f̂ ′1,t, f̂
′
2,t)
′.

The procedure is iterated replacing Ĝ(p−1) with Ĝ(p) in step 1 and can be initialized performing the

PCA in step 1 with ξ̂j,t = xj,t, i.e. with Ĝ(0) = 0.

4.2 Estimation of the factor dynamics

The free parameters of the factor dynamics can be estimated by using the reduced form of the VAR(1)

model in equation (3) and replacing the unobservable factor values with their estimates obtained in

Section 4.1. The reduced form of the VAR(1) model in equation (3) is given by (see Ghysels (2012)):
f1,t

f2,t

gt

 =


0 RH A1

0 R2
H RHA1 + A2

M1 M2 RL



f1,t−1

f2,t−1

gt−1

+ ζt, (13)

where ζt is a zero-mean white noise process with variance-covariance matrix Σζ given in Equation

(A.17) in Appendix A.2. Let us denote by θ ∈ Rp, say, the parameter vector collecting the elements

in the matrices A1, A2, RH , RL, M1 and M2. By using the normalization restrictions on the factor

process given in Equations (A.9)-(A.14), matrix Σζ in Equation (A.17) can be written in terms of

vector θ, i.e. Σζ = Σζ(θ). Then, the reduced-form factor dynamics in Equation (13) becomes:

zt = C(θ)zt−1 + ζt, (14)
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where zt = [f ′1,t, f
′
2,t, g

′
t]
′ is the vector of stacked factors, matrix C(θ) is the autoregressive matrix

in Equation (13) written as a function of θ, and V (ζt) = Σζ(θ). The parameter θ is subject to the

constraint θ ∈ Θ, where Θ ⊂ Rp is the set of parameters values that satisfy matrix equation (5). We

estimate parameter θ by constrained Gaussian Pseudo Maximum Likelihood (PML) by replacing the

unobserved factor values f1,t, f2,t and gt with their estimates f̂1,t, f̂2,t and ĝt for all t = 1, ..., T . The

estimator of parameter θ is:

θ̂ = arg max
θ∈Θ

Q̂T (θ), (15)

where the criterion Q̂T (θ) is the Gaussian log-likelihood function:

Q̂T (θ) = −1

2
log |Σζ(θ)| −

1

2T

T∑
t=2

[ẑt − C(θ)ẑt−1]′Σζ(θ)
−1 [ẑt − C(θ)ẑt−1] , (16)

and involves the factor estimates.

5 Large sample properties of the estimators

Let us assume that the HF and LF factors are one-dimensional, i.e. KH = KL = 1. The next Proposi-

tion provides the linearization of the iterative estimators defined by equations (11) and (12) around the

true factor values.

Proposition 3. For large NH , NL and T , the estimators F̂ (p) and Ĝ(p) satisfy the linearized iteration

step:

F̂ (p)ĥ−1
F − F = ηF + LF (Ĝ(p−1)ĥ−1

G −G),

Ĝ(p)ĥ−1
G −G = ηG + LG(Ĝ(p−1)ĥ−1

G −G),

for some random positive scalars ĥF and ĥG, where the random vectors ηF and ηG are such that

‖ηF‖/
√
T = Op(T

−1/2) and ‖ηG‖/
√
T = Op(T

−1/2), and F = (F ′1, F
′
2)′ and G are the (2T × 1) and

(T×1) vectors of the true values of the HF and LF factors. The (T×T ) matrix LG has (asymptotically)

the eigenvalues:

• 0, associated with the eigenvector G,
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• 1, with multiplicity 2, associated with the eigenspace spanned by F1 + 2(w1 + φw2)G and

F2 + 2(w1φ+ w2)G,

• w1d1 + w2d2, with multiplicity T − 3, associated with the eigenspace that is the orthogonal

complement of the linear space spanned by F1, F2 and G.

The constants w1, w2, d1 and d2 are defined as:

wj = lim
NL→∞

(
B′B

NL

)−1(
B′Ωj

NL

)
, dj = lim

NH→∞

(
Λ′Λ

NH

)−1(
Λ′∆j

NH

)
, j = 1, 2,

and φ = Cov(f1,t, f2,t) is the stationary autocorrelation of the HF factor.

The proof of Proposition 3 is given in Appendix C.

Proposition 4 provides the consistency of the factor values estimates at rate
√
T . We use the root

mean squared error criterion to assess convergence of the factor estimates at different dates.

Proposition 4. Assuming NH , NL, T →∞, s.t. NH � NL ≥ T and other regularity conditions:

T−1/2‖F̂ ĥ−1
F − F‖+ T−1/2‖Ĝĥ−1

G −G‖ = Op

(
1√
T

)
,

where F and G are the vectors of the true factor values.

The proof of Proposition 4 is given in Appendix C.

Proposition 5. Assuming NH , NL, T →∞, s.t. NH � NL ≥ T and other regularity conditions:

‖θ̂ − θ‖ = Op

(
1√
T

)
.

The proof of Proposition 5 is given in Appendix C.

6 Monte Carlo analysis

[...]
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7 Empirical application
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8 Conclusions
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TABLES

Table 1: Estimated number of factors (HF data: IP indexes, LF: non-IP real value added GDP)

ICp1: growth rates of indexes

[Y X1] [Y X2] [Y X3] [Y X4] [Y X1:4] [Y XLF ] [XLF ] [XHF ] [Y ]

1 2 1 2 3 2 2 2 1

ICp2: growth rates of indexes

[Y X1] [Y X2] [Y X3] [Y X4] [Y X1:4] [Y XLF ] [XLF ] [XHF ] [Y ]

1 2 1 1 3 1 2 1 1

ICp1: innovations to sectoral productivity (εt in Foerster, Sarte, and Watson (2011))

[εY εX1] [εY εX2] [εY εX3] [εY εX4] [εY εX1:4] [εY εX,LF ] [εX,LF ] [εX,HF ] [εY ]

1 2 1 1 1 2 3 2 1

ICp2: innovations to sectoral productivity (εt in Foerster, Sarte, and Watson (2011))

[εY εX,1] [εY εX,2] [εY εX,3] [εY εX,4] [εY εX,1:4] [εY εX,LF ] [εX,LF ] [εX,HF ] [εY ]

1 1 1 1 1 1 2 1 1

In the table we display the estimated number of latent factors for different panels of mixed frequency data, using the
information criteria ICp1 and ICp2 proposed by Bai and Ng (2002). In the first 2 lines, the two panels of observable
variables have the following dimensions: NH = 117, NL = 42, T = 35. The notation [Y Xi] indicates that panel Y
and panel Xi are stacked together in a unique panel, and the number of latent factors is determined in this new panel. Y
denotes the panel of LF (yearly) observations of growth rates of real value added GDP for the sample period 1977-2011,
for the following 42 sectors: 35 services, Construction, Farms, Forestry-Fishing and related activities, General government
(federal), Government enterprises (federal), General government (states and local) and Government enterprises (states and
local). Xi denotes the panel of HF (quarterly) observations of growth rates for the sample period 1977.Q1-2011.Q4, for the
117 industrial production indexes considered by Foerster, Sarte, and Watson (2011), for quarter i, for i = 1, 2, 3, 4. XHF

denotes the 4T ×NH panel of HF observations for all quarters in the sample. XLF denotes the panel of HF observations
of growth rates aggregated as a panel of LF observations (the aggregation is performed by taking the mean of the quarterly
observations). X1:4 denotes the T × 4NH panel of HF observations for all quarters in the sample, with observations
of different quarters stacked along the columns. In our model, the number of factors is KL + KH for panels [Y Xi],
i = 1, 2, 3, 4, KL + 4KH for panel [Y X1:4] and KL +KH for panel [Y XLF ].
In the third and fourth line we perform the same type of analysis as in the first two lines, but on the panels of
sectoral productivity shocks (εt in Foerster, Sarte, and Watson (2011)). εX denotes the panel of productivity shocks
for the 117 IP sectors, and εY denotes the panel of productivity shocks for the panel of 38 non-manufacturing sectors
(corresponding to the 42 considered before, excluding the 4 Government related sectors, as capital flows data are
not available for these sectors.).
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TABLE 1 BIS: Estimated number of factors (HF data: IP indexes, LF: non-IP real GROSS OUTPUT)

ICp1: growth rates of indexes

[Y X1] [Y X2] [Y X3] [Y X4] [Y X1:4] [Y XLF ] [XLF ] [XHF ] [Y ]

1 1 2 2 2 2 2 1 15

ICp2: growth rates of indexes

[Y X1] [Y X2] [Y X3] [Y X4] [Y X1:4] [Y XLF ] [XLF ] [XHF ] [Y ]

1 1 2 2 2 2 1 1 2

ICp1: innovations to sectoral productivity (εt in Foerster, Sarte, and Watson (2011))

[εY εX1] [εY εX2] [εY εX3] [εY εX4] [εY εX1:4] [εY εX,LF ] [εX,LF ] [εX,HF ] [εY ]

1 1 1 1 1 2 3 1 15

ICp2: innovations to sectoral productivity (εt in Foerster, Sarte, and Watson (2011))

[εY εX,1] [εY εX,2] [εY εX,3] [εY εX,4] [εY εX,1:4] [εY εX,LF ] [εX,LF ] [εX,HF ] [εY ]

1 1 1 1 1 1 1 1 1

In the table we display the estimated number of latent factors for different panels of mixed frequency data, using the
information criteria ICp1 and ICp2 proposed by Bai and Ng (2002). In the first 2 lines, the two panels of observable
variables have the following dimensions: NH = 117, NL = 38, T = 24. The notation [Y Xi] indicates that panel Y and
panelXi are stacked together in a unique panel, and the number of latent factors is determined in this new panel. Y denotes
the panel of LF (yearly) observations of growth rates of real GROSS OUTPUT for the sample period 1988-2011, for the
following 38 sectors: 35 services, Construction, Farms, Forestry-Fishing and related activities. Xi denotes the panel of HF
(quarterly) observations of growth rates for the sample period 1988.Q1-2011.Q4, for the 117 industrial production indexes
considered by Foerster, Sarte, and Watson (2011), for quarter i, for i = 1, 2, 3, 4. XHF denotes the 4T × NH panel of
HF observations for all quarters in the sample. XLF denotes the panel of HF observations of growth rates aggregated as a
panel of LF observations (the aggregation is performed by taking the mean of the quarterly observations). X1:4 denotes the
T × 4NH panel of HF observations for all quarters in the sample, with observations of different quarters stacked along the
columns. In our model, the number of factors is KL +KH for panels [Y Xi], i = 1, 2, 3, 4, KL + 4KH for panel [Y X1:4]
and KL +KH for panel [Y XLF ].
In the third and fourth line we perform the same type of analysis as in the first two lines, but on the panels of sectoral
productivity shocks (εt in Foerster, Sarte, and Watson (2011)). εX denotes the panel of productivity shocks for the
117 IP sectors, and εY denotes the panel of productivity shocks for the panel of 38 non-manufacturing sectors. For
productivity innovations, T = 23, as the innovation for the first year in the sample cannot be computed.

17



Table 2: Regressions of HF and LF observables on 1 HF and 1 LF factors: quantiles of adjusted R2

(HF data: IP indexes, LF: non-IP real value added GDP).

a) R̄2 Quantile. OBSERVABLES: growth rates of indexes. FACTORS: extracted from original data.

Obs. Factors 10% 25% 50% 75% 90%

Y LF -3.0 -2.3 4.4 11.2 22.0
Y LF, HF 0.5 8.7 24.5 46.0 56.1
Y HF -4.0 3.9 15.8 33.2 45.2

X LF -2.5 -2.0 -1.2 0.4 2.2
X HF, LF 0.7 5.9 24.8 38.2 57.1
X HF -0.0 5.3 25.8 38.3 57.0

b) R̄2 Quantile. OBSERVABLES: εX and εY , i.e. sectoral productivity innovations (εt in Foerster,
Sarte, and Watson (2011)). FACTORS: extracted from sectoral productivity innovations.

Obs. Factors 10% 25% 50% 75% 90%

εY LF -2.8 -1.6 5.9 11.9 26.7
εY LF, HF -0.5 7.4 12.5 38.3 49.0
εY HF -3.9 1.0 4.7 18.9 35.8

εX LF -2.0 -1.4 -0.6 1.6 3.3
εX HF, LF -0.9 2.3 9.9 22.5 40.8
εX HF -0.6 1.0 8.2 20.1 40.6

c) R̄2 Quantile. OBSERVABLES: growth rates of indexes. FACTORS: extracted from sectoral
productivity innovations.

Obs. Factors 10% 25% 50% 75% 90%

Y LF -2.7 -0.4 5.3 17.0 29.8
Y LF, HF 3.4 6.4 16.2 48.5 60.2
Y HF -2.3 2.7 9.5 23.6 38.2

X LF -2.1 -1.2 0.6 2.2 5.0
X HF, LF 0.9 4.2 21.3 35.8 52.4
X HF -0.1 3.0 20.2 32.2 49.2

d) R̄2 Quantile. OBSERVABLES: growth rates of indexes. FACTORS: extracted from sectoral
productivity innovations and their lagged values (only lag 1 is considered).

Obs. Factors 10% 25% 50% 75% 90%

Y LF -2.6 0.7 10.0 22.4 36.3
Y LF, HF 2.7 10.2 23.3 54.1 63.1
Y HF -4.0 0.1 12.1 28.7 49.7

X LF -3.7 -2.7 -0.4 2.4 5.3
X HF, LF -0.3 5.7 23.8 40.8 60.0
X HF 0.2 4.4 21.7 37.7 56.7
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TABLE 2: description of dataset and methodology (HF data: IP indexes, LF: non-IP real value added
GDP)

In the table we display the quantiles of the empirical distributions of the adjusted R2, denoted R̄2, for different sets of time
series regressions.

Panel a)
The regressions in the first three lines involve the real GDP growth rates of the 42 sectors (35 services, Construction,
Farms, Forestry-Fishing and related activities + 4 Government sectors) as dependent variables, while the regressions in
the last tree lines involve the growth of the 117 industrial production indexes as dependent variables. The factors used as
explanatory variables are estimated from the panel of 42 GDP sectors and 117 industrial production indexes considered by
Foerster, Sarte, and Watson (2011), using a mixed frequency factor model (MFFM) with KH = KL = 1. The sample
period for the estimation of both the factor model and the regressions is 1977.Q1-2011.Q4. In lines 1 and 4 we report the
quantiles of R̄2 of the regressions using as explanatory variable the estimated LF factor only. In lines 2 and 5 we report
the quantiles of R̄2 of the regressions using as explanatory variables the estimated LF and HF factors. In lines 3 and 6 we
report the quantiles of R̄2 of the regressions using as explanatory variable the estimated HF factor only. The regressions in
lines 2 and 3 are unrestricted MIDAS regressions. The regressions in lines 4 and 5 allow the estimated coefficients of the
LF factor to be different at each quarter.

Panel b)
The regressions in the first three lines involve the productivity innovations of the 38 non-IP sectors (35 services,
Construction, Farms, Forestry-Fishing and related activities) as dependent variables, while the regressions in the last
tree lines involve the productivity innovations of the 117 industrial production indexes as dependent variables. The
factors used as explanatory variables are estimated from the panel of productivity innovations computed as proposed by
Foerster, Sarte, and Watson (2011), using a mixed frequency factor model (MFFM) with KH = KL = 1. The sample
period for the estimation of both the factor model and the regressions is 1978.Q1-2011.Q4, because the productivity
shocks can not be computed for the first year of the sample (see Foerster, Sarte, and Watson (2011), especially their
equation (B38) on page 10 of their Appendix B.)

Panel c)
The regressions in the first three lines involve the real GDP growth of the 38 non-IP sectors (35 services, Construction,
Farms, Forestry-Fishing and related activities) as dependent variables, while the regressions in the last tree lines involve
the growth of the 117 industrial production indexes as dependent variables. The factors used as explanatory variables are
estimated from the panel of productivity innovations computed as proposed by Foerster, Sarte, and Watson (2011), using a
mixed frequency factor model (MFFM) with KH = KL = 1. The sample period for the estimation of both the factor
model and the regressions is 1978.Q1-2011.Q4.

Panel d)
The regressions in the first three lines involve the real GDP growth of 38 non-IP sectors (35 services, Construction,
Farms, Forestry-Fishing and related activities) as dependent variables, while the regressions in the last tree lines involve
the growth of the 117 industrial production indexes as dependent variables. The factors used as explanatory variables are
estimated from the panel of productivity innovations computed as proposed by Foerster, Sarte, and Watson (2011), using
a mixed frequency factor model (MFFM) with KH = KL = 1. Both the contemporaneous and lagged values (only
lag 1 is included) of the factors are used as explanatory variables. The choice of including the lags of the factors as
regressors, is justified by equations (10) and (12) in Foerster, Sarte, and Watson (2011). The sample period for the
estimation of both the factor model and the regressions is 1979.Q1-2011.Q4.
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TABLE 2 BIS: Regressions of HF and LF observables on 1 HF and 1 LF factors: quantiles of adjusted
R2. (HF data: IP indexes, LF: non-IP real GROSS OUTPUT).

a) R̄2 Quantile. OBSERVABLES: indexes growth rates (Y are Gross Output growth rates). FAC-
TORS: extracted from original data.

Obs. Factors 10% 25% 50% 75% 90%

Y LF -3.6 -0.3 4.8 23.6 31.0
Y LF, HF -2.4 28.9 45.3 66.0 80.2
Y HF -3.0 7.0 28.0 44.0 63.0

X LF -3.6 -3.2 -2.2 -0.6 1.9
X HF, LF -1.4 5.7 22.6 40.1 63.2
X HF 0.4 5.1 21.8 41.2 63.2

b) R̄2 Quantile. OBSERVABLES: εX and εY , i.e. sectoral productivity innovations (εt in Foerster,
Sarte, and Watson (2011)). FACTORS: extracted from sectoral productivity innovations.

Obs. Factors 10% 25% 50% 75% 90%

Y LF -4.4 -3.7 -1.3 13.0 34.3
Y LF, HF -13.1 14.4 32.9 53.4 62.7
Y HF -9.2 -0.8 20.7 38.1 52.8

X LF -3.9 -3.1 -1.5 0.7 4.0
X HF, LF -2.9 0.3 7.8 19.3 34.6
X HF -1.0 0.6 4.8 19.6 35.9

c) R̄2 Quantile. OBSERVABLES: indexes growth rates (Y are Gross Output growth rates). FAC-
TORS: extracted from sectoral productivity innovations.

Obs. Factors 10% 25% 50% 75% 90%

Y LF -4.2 -0.2 4.7 21.0 43.8
Y LF, HF 2.2 20.2 44.7 66.4 81.1
Y HF -3.1 5.8 20.7 42.9 65.4

X LF -4.0 -3.1 -1.7 -0.2 3.5
X HF, LF -2.1 2.4 19.7 38.0 54.6
X HF -0.3 2.8 19.4 35.8 53.0

d) R̄2 Quantile. OBSERVABLES: indexes growth rates (Y are Gross Output growth rates). FAC-
TORS: extracted from sectoral productivity innovations and their lagged values (only lag 1 is consid-
ered).

Obs. Factors 10% 25% 50% 75% 90%

Y LF -8.1 1.1 7.9 25.6 52.3
Y LF, HF -8.7 24.4 50.2 74.3 84.4
Y HF -7.2 0.2 26.4 53.2 70.7

X LF -6.9 -5.4 -2.2 0.9 4.5
X HF, LF -2.2 6.1 21.3 40.8 56.5
X HF -0.1 4.1 21.5 39.3 54.6
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TABLE 2 BIS: description of dataset and methodology. (HF data: IP indexes, LF: non-IP real GROSS
OUTPUT)

In the table we display the quantiles of the empirical distributions of the adjusted R2, denoted R̄2, for different sets of time
series regressions.

Panel a)
The regressions in the first three lines involve the GROSS OUTPUT GROWTH RATES growth of the 38 non-IP (35
services, Construction, Farms, Forestry-Fishing and related activities) as dependent variables, while the regressions in
the last tree lines involve the growth of the 117 industrial production indexes as dependent variables. The factors used as
explanatory variables are estimated from the panel of 38 non-IP sectors and 117 industrial production indexes considered
by Foerster, Sarte, and Watson (2011), using a mixed frequency factor model (MFFM) with KH = KL = 1. The sample
period for the estimation of both the factor model and the regressions is 1988.Q1-2011.Q4. In lines 1 and 4 we report the
quantiles of R̄2 of the regressions using as explanatory variable the estimated LF factor only. In lines 2 and 5 we report
the quantiles of R̄2 of the regressions using as explanatory variables the estimated LF and HF factors. In lines 3 and 6 we
report the quantiles of R̄2 of the regressions using as explanatory variable the estimated HF factor only. The regressions in
lines 2 and 3 are unrestricted MIDAS regressions. The regressions in lines 4 and 5 allow the estimated coefficients of the
LF factor to be different at each quarter.

Panel b)
The regressions in the first three lines involve the productivity innovations of the 38 non-IP sectors (35 services,
Construction, Farms, Forestry-Fishing and related activities) as dependent variables, while the regressions in the last
tree lines involve the productivity innovations of the 117 industrial production indexes as dependent variables. Note
that productivity innovations are computed using the panel of GROSS OUTPUT GROWTH RATES for the LF
observables. The factors used as explanatory variables are estimated from the panel of productivity innovations computed
as proposed by Foerster, Sarte, and Watson (2011), using a mixed frequency factor model (MFFM) with KH = KL = 1.
The sample period for the estimation of both the factor model and the regressions is 1988.Q1-2011.Q4, because the
productivity shocks can not be computed for the first year of the sample (see Foerster, Sarte, and Watson (2011),
especially their equation (B38) on page 10 of their Appendix B.)

Panel c)
The regressions in the first three lines involve the GROSS OUTPUT growth of the 38 non-IP sectors (35 services,
Construction, Farms, Forestry-Fishing and related activities) as dependent variables, while the regressions in the last tree
lines involve the growth of the 117 industrial production indexes as dependent variables. The factors used as explanatory
variables are estimated from the panel of productivity innovations computed as proposed by Foerster, Sarte, and Watson
(2011), using a mixed frequency factor model (MFFM) with KH = KL = 1. The sample period for the estimation of
both the factor model and the regressions is 1989.Q1-2011.Q4. Note that productivity innovations are computed using
the panel of GROSS OUTPUT GROWTH RATES for the LF observables.

Panel d)
The regressions in the first three lines involve the GROSS OUTPUT growth of 38 non-IP sectors (35 services, Construction,
Farms, Forestry-Fishing and related activities) as dependent variables, while the regressions in the last tree lines involve
the growth of the 117 industrial production indexes as dependent variables. The factors used as explanatory variables are
estimated from the panel of productivity innovations computed as proposed by Foerster, Sarte, and Watson (2011), using
a mixed frequency factor model (MFFM) with KH = KL = 1. Both the contemporaneous and lagged values (only lag 1
is included) of the factors are used as explanatory variables. The choice of including the lags of the factors as regressors,
is justified by equations (10) and (12) in Foerster, Sarte, and Watson (2011). The sample period for the estimation of both
the factor model and the regressions is 1990.Q1-2011.Q4. Note that productivity innovations are computed using the
panel of GROSS OUTPUT GROWTH RATES for the LF observables.
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Table 5: Change in adjusted R2 of the regression of yearly sectoral GDP growth on the HF factor and
the LF factors vs. the regression on the HF factor only.

Sector change in R̄2

Ten sectors with largest change in R̄2

Social assistance 38.89
Computer systems design and related services 37.30
General government (STATES AND LOCAL) 30.67
Construction 29.82
Government enterprises (FEDERAL) 24.52
Rental and leasing services and lessors of intangible assets 23.84
Wholesale trade 22.71
Retail trade 19.41
Management of companies and enterprises 17.10
Real estate 16.34

Ten sectors with smallest change in R̄2

Securities, commodity contracts, and investments -2.20
Pipeline transportation -2.24
Air transportation -2.31
Publishing industries (includes software) -2.67
Broadcasting and telecommunications -2.97
Waste management and remediation services -2.97
Federal Reserve banks, credit intermediation, and related activities -3.11
Motion picture and sound recording industries -3.22
Water transportation -3.52
Hospitals and nursing and residential care facilities -3.68

In the table we display the difference in the adjusted R2, denoted R̄2, from the regressions of the growth rates of each
sectoral GDP index on the HF and LF estimated factors and on the HF factor only. The factors are estimated from the panel
of 42 GDP sectors and 117 industrial production indexes considered by Foerster, Sarte, and Watson (2011), using a mixed
frequency factor model with KH = KL = 1. The sample period for the estimation of both factor model and regressions is
1977.Q1-2011.Q4. These regressions are unrestricted MIDAS regressions.
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Table 8: Change in adjusted R2 of the regression of quarterly industrial production growth on the HF
and LF factors vs. the regression on the HF factor only.

Sector change in R̄2

Ten sectors with largest change in R̄2

Computer and peripheral equipment 11.12
Communications equipment 6.57
Grain and oilseed milling 6.50
Newspaper publishers 4.46
Electric power generation, transmission, and distribution 3.95
Railroad rolling stock 3.87
Coal mining 3.50
Periodical, book, and other publishers 3.38
Synthetic dye and pigment 3.01
Dairy product (except frozen) 2.71

Ten sectors with smallest change in R̄2

Industrial machinery -1.73
Coffee and tea -1.81
Agricultural implement -1.87
Apparel -1.88
Pulp mills -1.88
Engine, turbine, and power transmission equipment -1.91
Audio and video equipment -2.19
Petroleum refineries -2.42
Mining and oil and gas field machinery -2.60
Breweries -2.90

In the table we display the difference in the adjusted R2, denoted R̄2, from the regressions of the growth rates of the 117
industrial production indexes on the HF and LF estimated factors and on the HF factor only. The factors are estimated
from the panel of 42 GDP sectors and 117 industrial production indexes considered by Foerster, Sarte, and Watson (2011),
using a mixed frequency factor model with KH = KL = 1. The sample period for the estimation of both factor model and
regressions is 1977.Q1-2011.Q4. As the explanatory variables are observable at high frequency, in order to increase the fit
of the model we allow the coefficient of the LF factor to be different in each quarter of the same year.
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Table 9: Adjusted R2 of selected indexes on the estimated 1 HF and 1 LF factors (HF data: IP
indexes, LF: non-IP real value added GDP).

(1) (2) (3) (3) - (1)
Sector R̄2(HF ) R̄2(LF ) R̄2(HF + LF )

PANEL a)
REGRESSORS: factors extracted from sectoral output growth (X and Y)

HF observations
Industrial Production 89.46 -0.08 90.03 0.57

LF observations
GDP 60.39 20.22 85.48 25.09
GDP - Manifacturing 74.20 -0.76 75.89 1.69
GDP - Agriculture, forestry, fishing, and hunting -0.61 4.85 4.88 5.49
GDP - Construction 44.03 24.88 73.85 29.82
GDP - Wholesale trade 30.04 19.06 52.75 22.71
GDP - Retail trade 33.05 16.06 52.46 19.41
GDP - Transportation and warehousing 54.55 -1.43 54.81 0.26
GDP - Information 18.12 -2.54 15.85 -2.26
GDP - Finance, insurance, real estate, rental, and leasing 6.65 21.82 31.69 25.04
GDP - Professional and business services 47.29 19.17 70.74 23.45
GDP - Educational services, health care, and social assistance -10.52 -2.96 -14.25 -3.74
GDP - Arts, entert., recreation, accommod., and food services 63.10 1.14 66.57 3.47
GDP - Government -2.03 12.38 11.98 14.00

PANEL b)
REGRESSORS: contemporaneous values of factors extracted from innovations to sectoral productivity
(εt in Foerster, Sarte, and Watson (2011)).

HF observations
Industrial Production 69.30 6.08 75.95 6.65

LF observations
GDP 29.24 31.63 66.45 37.21
GDP - Manifacturing 53.31 10.41 67.13 13.82
GDP - Agriculture, forestry, fishing, and hunting 3.99 -1.48 2.47 -1.52
GDP - Construction 20.22 30.65 56.00 35.78
GDP - Wholesale trade 15.79 36.68 58.44 42.65
GDP - Retail trade 13.55 54.86 76.81 63.26
GDP - Transportation and warehousing 42.09 -0.34 43.18 1.09
GDP - Information 13.60 1.05 15.24 1.64
GDP - Finance, insurance, real estate, rental, and leasing 7.83 4.63 13.37 5.54
GDP - Professional and business services 31.82 24.78 61.16 29.35
GDP - Educational services, health care, and social assistance -4.95 10.15 6.55 11.50
GDP - Arts, entert., recreation, accommod., and food services 36.21 30.30 72.27 36.06
GDP - Government 4.23 1.02 5.56 1.34

26



TABLE 9: AdjustedR2 of selected indexes on the estimated 1 HF and 1 LF factors, and their lagged
values (HF data: IP indexes, LF: non-IP real value added GDP).

(1) (2) (3) (3) - (1)
Sector R̄2(HF ) R̄2(LF ) R̄2(HF + LF )

PANEL c)
REGRESSORS: factors extracted from innovations to sectoral productivity
(εt in Foerster, Sarte, and Watson (2011)) both contemporaneous and lagged values (only first lag).

HF observations
Industrial Production 76.77 2.10 82.91 6.15

LF observations
GDP 38.30 32.43 70.56 32.26
GDP - Manifacturing 62.49 6.75 69.26 6.77
GDP - Agriculture, forestry, fishing, and hunting 23.81 -3.63 18.68 -5.13
GDP - Construction 28.67 38.78 63.32 34.64
GDP - Wholesale trade 16.53 37.27 55.03 38.50
GDP - Retail trade 16.14 55.02 73.00 56.86
GDP - Transportation and warehousing 54.82 -3.94 53.32 -1.50
GDP - Information 34.39 13.36 35.75 1.36
GDP - Finance, insurance, real estate, rental, and leasing -0.97 9.11 1.43 2.40
GDP - Professional and business services 33.43 41.52 68.75 35.32
GDP - Educational services, health care, and social assistance -4.43 26.08 10.60 15.03
GDP - Arts, entert., recreation, accommod., and food services 35.48 25.02 74.47 38.99
GDP - Government 4.33 1.25 13.85 9.53

TABLE 9: description of dataset and methodology (HF data: IP indexes, LF: non-IP real value added
GDP)
In the table we display the adjusted R2, denoted R̄2, of the regression of growth rates of selected HF and LF indexes on the
HF factor (column R̄2(HF )), the LF factor (column R̄2(LF )) and both the HF and LF factors (column R̄2(LF +HF )).
The last column displays the difference of the values in column R̄2(LF + HF ) and column R̄2(HF ), i.e. the increment
in the adjusted R2 when the LF factor is added as a regressor to the HF factor.
PANEL a)
The GDP indexes used in this table are aggregates of the indexes used to estimate the factors. The factors are estimated
from the panel of 42 non-IP sectors and 117 industrial production indexes considered by Foerster, Sarte, and Watson
(2011), using a mixed frequency factor model with KH = KL = 1. The sample period for the estimation of both the
factor model and the regressions is 1977.Q1-2011.Q4.
PANEL b)
The GDP indexes are the same as in Panel a). The factors used as explanatory variables are estimated from the panel of
productivity innovations computed as proposed by Foerster, Sarte, and Watson (2011), using a mixed frequency factor
model (MFFM) with KH = KL = 1. The sample period for the estimation of both the factor model and the
regressions is 1978.Q1-2011.Q4, because the productivity shocks can not be computed for the first year of the
sample (see Foerster, Sarte, and Watson (2011), especially their equation (B38) on page 10 of their Appendix B.)
PANEL c)
The GDP indexes are the same as in Panel a). The factors used as explanatory variables are estimated from the panel of
productivity innovations computed as proposed by Foerster, Sarte, and Watson (2011), using a mixed frequency factor
model (MFFM) with KH = KL = 1. Both the contemporaneous and lagged values (only lag 1 is included) of the
factors are used as explanatory variables. The choice of including the lags of the factors as regressors, is justified
by equations (10) and (12) in Foerster, Sarte, and Watson (2011). The sample period for the estimation of both the
factor model and the regressions is 1979.Q1-2011.Q4.
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TABLE 9 BIS: Adjusted R2 of selected indexes on the estimated 1 HF and 1 LF factors. (HF data: IP
indexes, LF: non-IP real GROSS OUTPUT)

(1) (2) (3) (3) - (1)
Sector R̄2(HF ) R̄2(LF ) R̄2(HF + LF )

PANEL a)
REGRESSORS: factors extracted from sectoral output growth (X and Y)

HF observations
Industrial Production 89.28 -0.22 90.01 0.73

LF observations
GO (all sectors) 70.75 16.73 94.89 24.14
GO - Manifacturing 90.22 -0.38 94.68 4.47
GO - Agriculture, forestry, fishing, and hunting -8.85 0.12 -9.13 -0.28
GO - Construction 28.13 29.35 65.29 37.16
GO - Wholesale trade 85.18 -3.56 85.52 0.34
GO - Retail trade 81.68 -2.75 82.83 1.15
GO - Transportation and warehousing 75.42 3.54 83.81 8.39
GO - Information 25.46 28.87 61.91 36.46
GO - Finance, insurance, real estate, rental, and leasing 17.72 22.89 46.49 28.78
GO - Professional and business services 45.12 33.85 88.60 43.48
GO - Educational services, health care, and social assistance 3.05 3.28 7.15 4.10
GO - Arts, entertainment, recreation, accommodation, and food services 71.14 0.38 75.42 4.28
GO - Government 12.24 -0.52 12.32 0.08

PANEL b)
REGRESSORS: contemporaneous values of factors extracted from innovations to sectoral productivity
(εt in Foerster, Sarte, and Watson (2011)).

HF observations
Industrial Production 70.52 9.18 80.60 10.08

LF observations
GO (all sectors) 48.57 27.61 85.09 36.51
GO - Manifacturing 70.00 16.02 93.50 23.50
GO - Agriculture, forestry, fishing, and hunting -11.65 -3.17 -16.24 -4.58
GO - Construction 19.12 20.95 45.86 26.74
GO - Wholesale trade 78.27 6.95 91.45 13.18
GO - Retail trade 73.40 4.97 83.86 10.46
GO - Transportation and warehousing 68.17 7.51 81.14 12.97
GO - Information 4.57 59.81 78.09 73.51
GO - Finance, insurance, real estate, rental, and leasing 6.60 13.04 22.88 16.28
GO - Professional and business services 37.74 36.51 84.23 46.49
GO - Educational services, health care, and social assistance 12.33 2.55 16.10 3.76
GO - Arts, entert., recreation, accommod., and food services 66.27 -0.54 69.36 3.09
GO - Government 13.12 -1.39 11.95 -1.16
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TABLE 9 BIS: Adjusted R2 of selected indexes on the estimated 1 HF and 1 LF factors, and their
lagged values. (HF data: IP indexes, LF: non-IP real GROSS OUTPUT)

(1) (2) (3) (3) - (1)
Sector R̄2(HF ) R̄2(LF ) R̄2(HF + LF )

PANEL c)
REGRESSORS: factors extracted from innovations to sectoral productivity
(εt in Foerster, Sarte, and Watson (2011)) both contemporaneous and lagged values (only first lag).

HF observations
Industrial Production 71.41 5.77 80.70 9.29

LF observations
GO (all sectors) 53.15 24.71 84.74 31.59
GO - Manifacturing 74.63 13.09 92.69 18.06
GO - Agriculture, forestry, fishing, and hunting -40.11 -7.36 -50.94 -10.83
GO - Construction 6.96 17.98 26.30 19.34
GO - Wholesale trade 81.76 2.47 91.74 9.97
GO - Retail trade 76.44 2.86 82.66 6.22
GO - Transportation and warehousing 84.37 15.69 88.58 4.20
GO - Information 7.93 64.94 95.04 87.11
GO - Finance, insurance, real estate, rental, and leasing 14.64 13.83 28.03 13.39
GO - Professional and business services 41.01 41.96 82.76 41.75
GO - Educational services, health care, and social assistance -4.03 3.42 -0.76 3.27
GO - Arts, entert., recreation, accommod., and food services 74.56 -3.75 71.97 -2.59
GO - Government 75.69 14.80 78.36 2.66

TABLE 9 BIS: description of dataset and methodology. (HF data: IP indexes, LF: non-IP real GROSS
OUTPUT)
In the table we display the adjusted R2, denoted R̄2, of the regression of growth rates of selected HF and LF indexes on the
HF factor (column R̄2(HF )), the LF factor (column R̄2(LF )) and both the HF and LF factors (column R̄2(LF +HF )).
The last column displays the difference of the values in column R̄2(LF + HF ) and column R̄2(HF ), i.e. the increment
in the adjusted R2 when the LF factor is added as a regressor to the HF factor.

PANEL a)
The GDP indexes used in this table are aggregates of the indexes used to estimate the factors. The factors are estimated
from the panel of 38 non-IP sectors and 117 industrial production indexes considered by Foerster, Sarte, and Watson
(2011), using a mixed frequency factor model with KH = KL = 1. The sample period for the estimation of both the
factor model and the regressions is 1988.Q1-2011.Q4.

PANEL b)
The GROSS OUTPUT indexes are the same as in Panel a). The factors used as explanatory variables are estimated from the
panel of productivity innovations computed as proposed by Foerster, Sarte, and Watson (2011), using a mixed frequency
factor model (MFFM) with KH = KL = 1. The sample period for the estimation of both the factor model and the
regressions is 1989.Q1-2011.Q4, because the productivity shocks can not be computed for the first year of the sample. Pro-
ductivity innovations are computed using the panel of GROSS OUTPUT GROWTH RATES for the LF observables.

PANEL c)
Corresponds to PANEL c) in Table 9. The sample period for the estimation of both the factor model and the regressions
is 1990.Q1-2011.Q4. Note that productivity innovations are computed using the panel of GROSS OUTPUT
GROWTH RATES for the LF observables.
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Table 10: Correlation matrix of the estimated HF and LF factors.

f̂1,t f̂2,t f̂3,t f̂4,t ĝt

f̂1,t 1.000 0.663 0.254 0.141 0.000
f̂2,t 0.663 1.000 0.668 0.148 0.000
f̂3,t 0.254 0.668 1.000 0.639 0.000
f̂4,t 0.141 0.148 0.639 1.000 0.000
ĝt 0.000 0.000 0.000 0.000 1.000

In the table we display the correlation matrix of the stacked vector of estimated factors (f̂1,t, f̂2,t, f̂3,t, f̂4,t, ĝt). The factors
are estimated from the panel of 42 GDP sectors and 117 industrial production indexes considered by Foerster, Sarte, and
Watson (2011), using a mixed frequency factor model with KH = KL = 1. The sample period for the estimation of both
the factor model and the regressions is 1977.Q1-2011.Q4.

Table 11: Regressions of observed HF and LF observables on estimated factors: quantiles of λ̂i and b̂i.

Quantile

Coeff. 10% 25% 50% 75% 90%

λ̂i 0.0670 0.2428 0.5116 0.6200 0.7546

b̂i -0.2474 0.0176 0.2058 0.3664 0.4856

In the table we display the quantiles of the empirical distributions of the estimated loadings λ̂i and b̂i of the HF and LF
factors, i.e. the elements of the estimated vectors Λ̂ and B̂, respectively. The factors and the loadings are estimated from
the panel of 42 GDP sectors and 117 industrial production indexes considered by Foerster, Sarte, and Watson (2011), using
a mixed frequency factor model with KH = KL = 1. The sample period for the estimation of both the factor model and
the regressions is 1977.Q1-2011.Q4.
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Table 12: Estimates of the unconstrained reduced-form VAR (1) model for the factor process.

We estimate the following unconstrained reduced-form VAR(1) on the factor process:
f1,t
f2,t
f3,t
f4,t
gt

 = a+A


f1,t−1
f2,t−1
f3,t−1
f4,t−1
gt−1

+ ζt, ζt ∼ N(0,Σζ). (T.1)

The estimates are given by:

Â =



-0.45 0.35 −0.06 0.82 −0.09
(0.16) (0.23) (0.39) (0.17) (0.11)
−0.36 −0.03 0.47 0.27 −0.30
(0.23) (0.34) (0.57) (0.25) (0.16)
−0.17 −0.03 0.22 −0.06 −0.10
(0.17) (0.25) (0.42) (0.19) (0.12)
−0.30 0.33 0.14 −0.09 0.08
(0.28) (0.41) (0.68) (0.30) (0.20)
0.16 0.29 −0.18 0.22 0.36

(0.23) (0.33) (0.55) (0.24) (0.16)


,

Σ̂ζ =



0.3444 0.2492 0.0986 0.0796 −0.1096
(0.0591) (0.0000) (0.0000) (0.0000) (0.0000)
0.2492 0.7319 0.3615 0.1043 0.1545

(0.0680) (0.1255) (0.0000) (0.0000) (0.0000)
0.0986 0.3615 0.3981 0.4386 0.1116

(0.0465) (0.0788) (0.0683) (0.0000) (0.0000)
0.0796 0.1043 0.4386 1.0657 −0.0434

(0.0741) (0.1078) (0.0952) (0.1828) (0.0000)
−0.1096 0.1545 0.1116 −0.0434 0.6865
(0.0604) (0.0880) (0.0648) (0.1039) (0.1177)


.

The correlation matrix corresponding to the estimated variance-covariance matrix Σ̂ζ is:
1.0000 0.4964 0.2664 0.1315 −0.2254
0.4964 1.0000 0.6697 0.1181 0.2180
0.2664 0.6697 1.0000 0.6733 0.2135
0.1315 0.1181 0.6733 1.0000 −0.0507
−0.2254 0.2180 0.2135 −0.0507 1.0000

 .

The estimated values of the constant vector â are not reported because they are not significantly different from zero at the
5% level. The VAR (1) model is estimated by OLS equation by equation. Significant estimates at 5% level are displayed in
bold and standard errors are reported in parentheses. The factors are estimated from the panel of 42 GDP sectors and 117
industrial production indexes considered by Foerster, Sarte, and Watson (2011), using a mixed frequency factor model with
KH = KL = 1. The sample period for the estimation of both the factor model and the VAR (1) model is 1977.Q1-2011.Q4.
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Table 13: Estimates of the constrained reduced-form VAR (1) model for the factor process.

We estimate the following constrained reduced-form VAR(1) on the factor process:
f1,t
f2,t
f3,t
f4,t
gt

 = A


f1,t−1
f2,t−1
f3,t−1
f4,t−1
gt−1

+ ζt, ζt ∼ N(0,Σ) , (T.2)

where:

A =


0 0 0 rH a
0 0 0 r2H a(1 + rH)
0 0 0 r3H a(1 + rH + r2H)
0 0 0 r4H a(1 + rH + r2H + r3H)
m1 m2 m3 m4 rL

 , (T.3)

and

Σζ =


σ2
H

σ2
HrH σ2

H(1 + r2H)
σ2
Hr

2
H σ2

HrH(1 + r2H) σ2
H(1 + r2H + r4H)

σ2
Hr

3
H σ2

Hr
2
H(1 + r2H) σ2

HrH(1 + r2H + r4H) σ2
H(1 + r2H + r4H + r6H)

ρHLσHσL (1 + r)ρHLσHσL ρHLσHσL(1 + r + r2) ρHLσHσL(1 + r + r2 + r3) σ2
L

 . (T.4)

The estimates are given by:

Â =


0.0000 0.0000 0.0000 0.6542 −0.0268
0.0000 0.0000 0.0000 0.4280 −0.0443
0.0000 0.0000 0.0000 0.2800 −0.0557
0.0000 0.0000 0.0000 0.1832 −0.0632
0.1677 0.2821 −0.1756 0.2207 0.3643

 , Σ̂ζ =


0.5623 0.3678 0.2406 0.1574 0.0033
0.3678 0.8029 0.5252 0.3436 0.0055
0.2406 0.5252 0.9059 0.5926 0.0070
0.1574 0.3436 0.5926 0.9499 0.0079
0.0033 0.0055 0.0070 0.0079 0.6664

 ,

Coefficient Estimate St. Error

rH 0.6542 0.0651
a -0.0268 0.0665
m1 0.1677 0.2134
m2 0.2821 0.3008
m3 -0.1756 0.4968
m4 0.2207 0.2233
φ 0.3643 0.1438
σH 0.7498 0.1283
σL 0.8163 0.2743
ρHL 0.0055 0.0962

The VAR (1) model is estimated by Maximum Likelihood. The factors are estimated from the panel of 42 GDP sectors
and 117 industrial production indexes considered by Foerster, Sarte, and Watson (2011), using a mixed frequency factor
model with KH = KL = 1. The sample period for the estimation of both the factor model and the VAR (1) model is
1977.Q1-2011.Q4.
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Table 14: Adjusted R2 of the regression of yearly sectoral GDP growth on the HF factor.

Sector R̄2

Accommodation 72.06
Truck transportation 60.90
Administrative and support services 56.71
Other transportation and support activities 47.82
Construction 44.03
Other services, except government 42.28
Warehousing and storage 40.99
Miscellaneous professional, scientific, and technical services 40.23
Funds, trusts, and other financial vehicles 38.70
Government enterprises (STATES AND LOCAL) 35.15
Legal services 33.25
Retail trade 33.05
Wholesale trade 30.04
Air transportation 27.25
Food services and drinking places 27.13
Government enterprises (FEDERAL) 25.57
Performing arts, spectator sports, museums, and related activities 22.43
Publishing industries (includes software) 21.69
Amusements, gambling, and recreation industries 19.53
Real estate 19.38
Rail transportation 18.90
Waste management and remediation services 12.73
Pipeline transportation 11.90
Computer systems design and related services 11.54
Educational services 10.49
Broadcasting and telecommunications 9.68
Securities, commodity contracts, and investments 7.74
Social assistance 6.33
Rental and leasing services and lessors of intangible assets 6.16
Motion picture and sound recording industries 4.35
Transit and ground passenger transportation 4.02
General government (FEDERAL) 3.94
Insurance carriers and related activities 3.06
Farms 0.35
Forestry, fishing, and related activities -1.12
General government (STATES AND LOCAL) -1.12
Federal Reserve banks, credit intermediation, and related activities -1.54
Water transportation -3.99
Ambulatory health care services -4.07
Management of companies and enterprises -4.24
Hospitals and nursing and residential care facilities -7.15
Information and data processing services -9.05

In the table we display the adjusted R2, denoted R̄2, for the time series regressions of each of the of 42 GDP sectors on
the estimated HF factor. The factors are estimated from the panel of 42 GDP sectors and 117 industrial production indexes
considered by Foerster, Sarte, and Watson (2011), using a mixed frequency factor model with KH = KL = 1. The
sample period for the estimation of both factor model and regressions is 1977.Q1-2011.Q4. The regressions in this table
are unrestricted MIDAS regressions.
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Table 15: Adjusted R2 of the regression of yearly sectoral GDP growth on the HF and LF factors.

Sector R̄2

Construction 73.85
Accommodation 72.62
Administrative and support services 70.69
Truck transportation 60.01
Miscellaneous professional, scientific, and technical services 54.39
Wholesale trade 52.75
Retail trade 52.46
Other services, except government 51.23
Government enterprises (FEDERAL) 50.09
Computer systems design and related services 48.84
Other transportation and support activities 46.02
Social assistance 45.21
Warehousing and storage 44.90
Funds, trusts, and other financial vehicles 44.86
Legal services 44.49
Government enterprises (STATES AND LOCAL) 41.52
Real estate 35.72
Food services and drinking places 35.51
Rental and leasing services and lessors of intangible assets 30.00
General government (STATES AND LOCAL) 29.55
Air transportation 24.94
Performing arts, spectator sports, museums, and related activities 24.11
Rail transportation 20.19
Publishing industries (includes software) 19.02
Amusements, gambling, and recreation industries 18.23
Educational services 13.71
Transit and ground passenger transportation 13.04
Management of companies and enterprises 12.87
General government (FEDERAL) 11.74
Waste management and remediation services 9.76
Pipeline transportation 9.66
Farms 8.70
Broadcasting and telecommunications 6.71
Forestry, fishing, and related activities 6.57
Insurance carriers and related activities 6.15
Securities, commodity contracts, and investments 5.54
Motion picture and sound recording industries 1.14
Information and data processing services 1.01
Ambulatory health care services -0.65
Federal Reserve banks, credit intermediation, and related activities -4.65
Water transportation -7.51
Hospitals and nursing and residential care facilities -10.82

In the table we display the adjusted R2, denoted R̄2, for the time series regressions of each of the of 42 GDP sectors on the
estimated HF and LF factors. The factors are estimated from the panel of 42 GDP sectors and 117 industrial production
indexes considered by Foerster, Sarte, and Watson (2011), using a mixed frequency factor model with KH = KL = 1.
The sample period for the estimation of both factor model and regressions is 1977.Q1-2011.Q4. The regressions in this
table are unrestricted MIDAS regressions.
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Table 16: Change in adjusted R2 of the regression of yearly sectoral GDP growth on the HF factor and
the LF factors vs. the regression on the HF factor only.

Sector change in R̄2 B̂

Social assistance 38.89 0.59
Computer systems design and related services 37.30 0.58
General government (STATES AND LOCAL) 30.67 0.53
Construction 29.82 0.51
Government enterprises (FEDERAL) 24.52 0.47
Rental and leasing services and lessors of intangible assets 23.84 0.47
Wholesale trade 22.71 0.46
Retail trade 19.41 0.42
Management of companies and enterprises 17.10 0.41
Real estate 16.34 0.40
Miscellaneous professional, scientific, and technical services 14.15 0.37
Administrative and support services 13.97 0.36
Legal services 11.25 0.34
Information and data processing services 10.06 -0.34
Transit and ground passenger transportation 9.02 0.32
Other services, except government 8.95 0.30
Food services and drinking places 8.38 0.30
Farms 8.35 0.31
General government (FEDERAL) 7.80 -0.30
Forestry, fishing, and related activities 7.69 -0.30
Government enterprises (STATES AND LOCAL) 6.37 0.27
Funds, trusts, and other financial vehicles 6.16 -0.26
Warehousing and storage 3.90 0.22
Ambulatory health care services 3.42 -0.24
Educational services 3.21 0.23
Insurance carriers and related activities 3.09 0.23
Performing arts, spectator sports, museums, and related activities 1.68 0.19
Rail transportation 1.29 0.18
Accommodation 0.56 -0.11
Truck transportation -0.89 0.06
Amusements, gambling, and recreation industries -1.30 0.11
Other transportation and support activities -1.80 -0.00
Securities, commodity contracts, and investments -2.20 0.09
Pipeline transportation -2.24 -0.08
Air transportation -2.31 0.04
Publishing industries (includes software) -2.67 0.02
Broadcasting and telecommunications -2.97 0.03
Waste management and remediation services -2.97 0.02
Federal Reserve banks, credit intermediation, and related activities -3.11 0.06
Motion picture and sound recording industries -3.22 0.03
Water transportation -3.52 0.02
Hospitals and nursing and residential care facilities -3.68 -0.01

In the table we display the difference in the adjusted R2 (R̄2) from the regressions of each industrial production index
growth on the HF and LF estimated factors and on the HF factor only. The factors are estimated from the panel of 42 GDP
sectors and 117 industrial production indexes considered by Foerster, Sarte, and Watson (2011), using a mixed frequency
factor model with KH = KL = 1. The sample period for the estimation of both factor model and regressions is 1977.Q1-
2011.Q4. The regressions in this table are unrestricted MIDAS regressions.
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Table 17: Simulation results for DGP with 1 HF and 1 LF factors and different loading ∆j .

R2 quantiles

Factor NH NL TH TL 5% 25% 50% 75% 95%

DESIGN 1: ∆j = ∆̂j

HF 117 45 140 35 95 96 97 97 98
HF 498 180 560 140 99 99 99 99 99
LF 117 45 140 35 34 55 65 74 82
LF 498 180 560 140 86 89 92 93 95

DESIGN 2: ∆j = 2 · ∆̂j

HF 117 45 140 35 95 96 97 97 98
HF 498 180 560 140 99 99 99 99 99
LF 117 45 140 35 31 52 63 72 81
LF 498 180 560 140 83 87 90 92 94

DESIGN 3: ∆j = 5 · ∆̂j

HF 117 45 140 35 59 84 91 95 97
HF 498 180 560 140 90 95 96 98 99
LF 117 45 140 35 3 16 31 46 65
LF 498 180 560 140 41 57 68 77 87

We consider three simulation designs for the mixed frequency factor model in equation (1), in the case of 4 HF subperiods,
and equations (T.2) - (T.4) in table 13, and we assume that the numbers of factors areKLF = KHF = 1 both for simulation
and in estimation. The number of simulations for each design is 5000. The mixed frequency panels of observations are
simulated using the values of the parameters reported in the following table:

Param. value Param. mean std.dev. Param. mean std.dev.
rH 0.6542 ∆1 -0.0021 0.1610 σε 0.8909 0.1389
a 0.0000 ∆2 0.0197 0.1557 σu 0.7726 0.1343
m1 0.0000 ∆3 -0.0012 0.1450
m2 0.0000 ∆4 0.0040 0.1463
m3 0.0000 B -0.1735 0.2547
m4 0.0000 Ω1 0.1986 0.2506
φ 0.3643 Ω2 0.1311 0.2874
σH 0.7498 Ω3 -0.1798 0.4990
σL 0.8163 Ω4 0.1302 0.2258
ρHL 0.0000 Λ 0.4378 0.2528

All the simulated loadings, with the exception of ∆j , are drawn from independent normal distributions, with mean and
variance equal to the corresponding sample moments of the estimated loadings from our macro dataset, reported in the
previous table. Design 1 maintains the same distributions as in our macro dataset to simulate the loadings ∆j , while
Design 2 (resp. Design 3) is such that the simulated values of the ∆j loadings are 2 (resp. 5) times bigger than in our
macro-dataset. The variance-covariance matrices of the simulated innovations are diagonal, and their diagonal elements
are bootstrapped from the values in the diagonals of the estimated variance-covariance matrices in our macro dataset. The
averages and standard deviations of the square roots of the diagonal elements of these estimated matrices are reported in
the table, on the lines named σε and σu, respectively. For each simulation design we report one table displaying:

• Line 1: the quantiles of the R2 of the regression of the true HF factor on HF factor estimated from simulated panels
with same TS and CS dimensions as in our macro-dataset;

• Line 2: the quantiles of the R2 of the regression of the true HF factor on HF factor estimated from simulated panels
such that both the CS and TS dimensions are four times larger than in our macro-dataset;

• Line 3: the quantiles of the R2 of the regression of the true LF factor on LF factor estimated from simulated panels
with same TS and CS dimensions as in our macro-dataset;

• Line 4: the quantiles of the R2 of the regression of the true LF factor LF factor estimated from simulated panels
such that both the CS and TS dimensions are four times larger than in our macro-dataset.
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FIGURES

Figure 1: The model structure in the case of two high frequency subperiods.
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The Figure displays the schematic representation of the mixed-frequency factor model described in Section 2.1.
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Figure 2: Evolution of sectoral decomposition of US nominal GDP.
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The Figure displays the evolution from 1977 to 2011 of the sectoral decomposition of US nominal GDP. We aggregate the
shares of different sectors available from the website of the US Bureau of Economic Analysis, according to their NAICS
codes, in 5 different macro sectors: Industrial Production (yellow), Services (red), Government (green), Construction
(white), Others (grey).
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Figure 3: Adjusted R2 of the regression of yearly sectoral GDP growth on estimated factors.
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(a) AdjustedR2 of the regression of yearly sectoral GDP
growth on the HF factor.
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(b) Adjusted R2 of the regression of yearly sectoral
GDP growth on the HF and LF factors.

In Panel (a) we show the histogram of the adjustedR2, denoted R̄2, of the regressions of the yearly growth rates of sectoral
GDP indexes on the estimated HF factor. In Panel (b) we show the histogram of the adjusted R2 of the regressions of the
same growth rates on the estimated HF and LF factors. The factors are estimated from the panel of 42 GDP sectors and 117
industrial production indexes considered by Foerster, Sarte, and Watson (2011), using a mixed frequency factor model with
KH = KL = 1. The sample period for the estimation of both the factor model and the regressions is 1977.Q1-2011.Q4.
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Figure 4: Adjusted R2 of the regression of quarterly industrial production growth on estimated factors.
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(a) Adjusted R2 of the regression of quarterly industrial
production growth on the HF factor.
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(b) Adjusted R2 of the regression of quarterly industrial
production growth on the HF and LF factors.

In Panel (a) we show the histogram of the adjusted R2, denoted R̄2, of the regressions of the quarterly growth rates of
the industrial production indexes on the estimated HF factor. In Panel (b) we show the histogram of the adjusted R2 of
the regressions of the same growth rates on the estimated HF and LF factors. The factors are estimated from the panel of
42 GDP sectors and 117 industrial production indexes considered by Foerster, Sarte, and Watson (2011), using a mixed
frequency factor model with KH = KL = 1. The sample period for the estimation of both the factor model and the
regressions is 1977.Q1-2011.Q4.
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Figure 5: Regression of LF and HF indexes on estimated factors.
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(a) HF Index: Industrial Production Index growth.
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(b) LF Index: Aggregate GDP Index growth.
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(c) LF Index: GDP-Construction Index growth.
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(d) LF Index: GDP-Manifacturing Index growth.

Each panel displays the time series of the growth rate a certain HF or LF index (solid line), its fitted value obtained from a
regression of the index on the HF factor (dotted line), and its fitted value obtained from a regression of the index on both
the HF and LF factors (dashed line). The first three indexes reported in the panels are aggregates of the indexes used to
estimate the factors. The fourth index (GDP-Manufacturing) is constructed from sub-indexes not used for the estimation of
the factors. The factors are estimated from the panel of 42 GDP sectors and 117 industrial production indexes considered
by Foerster, Sarte, and Watson (2011), using a mixed frequency factor model with KH = KL = 1. The sample period for
the estimation of both the factor model and the regressions is 1977.Q1-2011.Q4.
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Figure 6: Trajectories and autocorrelation functions of HF and LF factors.
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(a) HF factor: estimated values.
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(b) LF factor: estimated values.
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(c) HF factor: autocorrelation function.

0 5 10 15 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

 

(d) LF factor: autocorrelation function.

Panel (a) displays the time series of estimated values of the HF factor. Panel (b) displays the time series of estimated values
of the LF factor. Panel (c) displays the empirical autocorrelation function of the estimated values of the HF factor. Panel (d)
displays the empirical autocorrelation function of the estimated values of the LF factor. The horizontal lines are asymptotic
95% confidence bands. The factors are estimated from the panel of 42 GDP sectors and 117 industrial production indexes
considered by Foerster, Sarte, and Watson (2011), using a mixed frequency factor model with KH = KL = 1. The sample
period for the estimation of the factor model is 1977.Q1-2011.Q4.
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Figure 7: Trajectories of HF and LF factors.
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The Figure displays the time series of estimated values of the HF factor (blue circles) an LF factors (red squares). For
each year we represent the LF factor as 4 squares corresponding to the 4 quarters, assuming the same value. The factors
are estimated from the panel of 42 GDP sectors and 117 industrial production indexes considered by Foerster, Sarte, and
Watson (2011), using a mixed frequency factor model with KH = KL = 1. The sample period for the estimation of the
factor model is 1977.Q1-2011.Q4.
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APPENDIX A: Restrictions on the factor dynamics

In this Appendix we derive restrictions on the structural VAR parameters of the factor dynamics im-

plied by i) the factor normalization and ii) stationarity.

A.1 Implied restrictions from factor normalization

The unconditional variance-covariance matrix of the vector of stacked factors (f ′1,t f ′2,t g′t)
′ is (see

equation (2)):

V = V


f1,t

f2,t

gt

 =


IKH

Φ 0

Φ′ IKH
0

0 0 IKL

 ,
where Φ is the covariance between f1,t and f2,t. Moreover, the factor dynamics is given by the struc-

tural VAR(1) model (see equation (3)):

Γ


f1,t

f2,t

gt

 = R


f1,t−1

f2,t−1

gt−1

+


v1,t

v2,t

wt

 , (A.1)

where:

Γ =


IKH

0 0

−RH IKH
0

0 0 IKL

 , R =


0 RH A1

0 0 A2

M1 M2 RL

 ,

and (v′1,t, v
′
2,t, w

′
t)
′ is a multivariate white noise process with mean 0 and variance-covariance matrix

(see equation (4)):

Σ = V


v1,t

v2,t

wt

 =


ΣH 0 ΣHL,1

ΣH ΣHL,2

ΣL

 .
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By computing the variance on both sides of equation (A.1) we get:

ΓV Γ′ = RV R′ + Σ. (A.2)

By matrix multiplication:

ΓV Γ′ =


IKH

Φ−R′H 0

Φ′ −RH IKH
−RHΦ− Φ′R′H +RHR

′
H 0

0 0 IKL

 ,

and:

RV R′ =


RHR

′
H + A1A

′
1 A1A

′
2 RH(Φ′M ′

1 +M ′
2) + A1R

′
L

A2A
′
1 A2A

′
2 A2R

′
L

(M1Φ +M2)R′H +RLA
′
1 RLA

′
2 M1M

′
1 +M2M

′
2 +M1ΦM ′

2 +M2Φ′M ′
1 +RLR

′
L

 .

Hence from equation (A.2) we get the following system of equations:

IKH
= RHR

′
H + A1A

′
1 + ΣH , (A.3)

IKH
−RHΦ− Φ′R′H +RHR

′
H = A2A

′
2 + ΣH , (A.4)

IKL
= M1M

′
1 +M2M

′
2 +M1ΦM ′

2 +M2Φ′M ′
1 +RLR

′
L + ΣL,

(A.5)

Φ−R′H = A1A
′
2, (A.6)

0 = RH(Φ′M ′
1 +M ′

2) + A1R
′
L + ΣHL,1, (A.7)

0 = A2R
′
L + ΣHL,2. (A.8)
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These equations imply:

ΣH = IKH
−RHR

′
H − A1A

′
1, (A.9)

ΣH = IKH
−RHΦ− Φ′R′H +RHR

′
H − A2A

′
2, (A.10)

ΣL = IKL
−M1M

′
1 −M1ΦM ′

2 −M2Φ′M ′
1 −M2M

′
2 −RLR

′
L, (A.11)

Φ = R′H + A1A
′
2, (A.12)

ΣHL,1 = −RH(Φ′M ′
1 +M ′

2)− A1R
′
L, (A.13)

ΣHL,2 = −A2R
′
L. (A.14)

Let θ be the vector containing the elements of matrices RH , RL, A1, A2, M1 and M2 in the structural

VAR(1) model. Equation (A.12) expresses the stationary autocovariance matrix Φ of the HF factor as

function of θ (more precisely, of RH and A1, A2). Equations (A.9), (A.11), (A.13) and (A.14) express

the variance-covariance matrix Σ of the factor innovations as a function of θ. Finally, equation (A.10),

together with equations (A.9) and (A.12), implies a restriction on vector θ:

A1A
′
1 −RHA1A

′
2 − A1A

′
2R
′
H − A2A

′
2 = 0. (A.15)

Thus, the factor dynamics is characterized by parameter matrices RH , RL, A1, A2, M1 and M2, which

are subject to restriction (A.15),

Let us now discuss restriction (A.15) in the case of single HF and LF factors, i.e. KH = KL = 1.

Equation (A.15) becomes:

A2
1 − 2RHA1A2 − A2

2 = 0, (A.16)

where A1, A2 and RH are scalars. This equation yields two solutions for A1 as a function of A2 and

RH :

A1 = A2

(
RH ±

√
1 +R2

H

)
.
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A.2 Stationarity conditions

The stationarity conditions are deduced from the reduced form of the VAR(1) dynamics in (A.1), that

is: 
f1,t

f2,t

gt

 = Γ−1R


f1,t−1

f2,t−1

gt−1

+ ζt

where:

Γ−1R =


0 RH A1

0 R2
H RHA1 + A2

M1 M2 RL

 ,

and ζt = Γ−1(v′1,t, v
′
2,t, w

′
t)
′ is a zero-mean white noise process with variance-covariance matrix

Σζ = Γ−1Σ(Γ−1)′ =


ΣH ΣHR

′
H ΣHL,1

RHΣH RHΣHR
′
H + ΣH ΣHL,2 +RHΣHL,1

Σ′HL,1 Σ′HL,2 + Σ′HL,1R
′
H ΣL

 . (A.17)

The stationarity condition is: the eigenvalues of matrix Γ−1R are smaller than 1 in modulus. When

eitherM1 = M2 = 0, orA1 = A2 = 0, the stationarity condition becomes: the eigenvalues of matrices

RH and RL are smaller than 1 in modulus.
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APPENDIX B: Identification

B.1 Proof of Proposition 1

By replacing equation (6) into model (1), we get


x1,t

x2,t

yt

 =


ΛA11 + ∆1A31 ΛA12 + ∆1A32 ΛA13 + ∆1A33

ΛA21 + ∆2A31 ΛA22 + ∆2A32 ΛA23 + ∆2A33

Ω1A11 + Ω2A21 +BA31 Ω1A12 + Ω2A22 +BA32 Ω1A13 + Ω2A23 +BA33



f̃1,t

f̃2,t

g̃t

+


ε1,t

ε2,t

ut

 .
(B.1)

This factor model satisfies the restrictions in the loading matrix displayed in equation (1) if, and only

if,

ΛA12 + ∆1A32 = 0, (B.2)

ΛA21 + ∆2A31 = 0, (B.3)

ΛA11 + ∆1A31 = ΛA22 + ∆2A32. (B.4)

Let us assume that
[
Λ

... ∆1

]
is full column rank for NH sufficiently large (the argument for the case in

which
[
Λ

... ∆2

]
is full column rank is similar). Equation (B.2) can be written as a linear homogeneous

system of equations for the elements of matrices A12 and A32:

[
Λ

... ∆1

] A12

A32

 = 0.

Since
[
Λ

... ∆1

]
is full column rank, it follows that

A12 = 0 and A32 = 0. (B.5)
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Then, equation (B.4) becomes Λ(A11 − A22) + ∆1A31 = 0, that is:

[
Λ

... ∆1

] A11 − A22

A31

 = 0. (B.6)

Since
[
Λ

... ∆1

]
is full column rank it follows that:

A11 = A22, (B.7)

A31 = 0. (B.8)

Replacing the last equation in (B.3), and using that matrix Λ is full rank, we get:

A21 = 0. (B.9)

Thus, the transformation of the factors that is compatible with the restrictions on the loading matrix in

equation (1) is: 
f1,t

f2,t

gt

 =


A11 0 A13

0 A22 A23

0 0 A33



f̃1,t

f̃2,t

g̃t

 , A11 = A22.

We can invert this transformation and write:

f̃1,t = A−1
11 f1,t − A−1

11 A13A
−1
33 gt,

f̃2,t = A−1
22 f2,t − A−1

22 A23A
−1
33 gt,

g̃t = A−1
33 gt.
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The transformed factors satisfy the normalization restrictions in (2) if, and only if,

Cov(f̃1,t, g̃t) = −A−1
11 A13A

−1
33 (A−1

33 )′ = 0, (B.10)

Cov(f̃2,t, g̃t) = −A−1
22 A23A

−1
33 (A−1

33 )′ = 0, (B.11)

V (f̃1,t) = A−1
11 (A−1

11 )′ + A−1
11 A13A

−1
33 (A−1

33 )′A′13(A−1
11 )′ = IKH

, (B.12)

V (f̃2,t) = A−1
22 (A−1

22 )′ + A−1
22 A23A

−1
33 (A−1

33 )′A′23(A−1
22 )′ = IKH

, (B.13)

V (g̃t) = A−1
33 (A−1

33 )′ = IKL
. (B.14)

Since the matrices A11 = A22 and A33 are nonsingular, equations (B.10) and (B.11) imply

A13 = A23 = 0. (B.15)

Then from equations (B.12) - (B.15), we get that matrices A11 = A22 and A33 are orthogonal.

Q.E.D.

B.2 Proof of Proposition 2

If ∆1 = ∆2 = 0 in the DGP, from (B.1) we get:


x1,t

x2,t

yt

 =


ΛA11 ΛA12 ΛA13

ΛA21 ΛA22 ΛA23

Ω1A11 + Ω2A21 +BA31 Ω1A12 + Ω2A22 +BA32 Ω1A13 + Ω2A23 +BA33



f̃1,t

f̃2,t

g̃t

+


ε1,t

ε2,t

ut

 .
(B.16)

The restrictions on the loading matrices imply:

ΛA12 = 0, ΛA21 = 0, ΛA11 = ΛA22.

Since Λ is full column rank, it follows A12 = 0, A21 = 0 and A11 = A22. In the transformed model

(B.16), the loadings of the LF factor on the HF data are:

∆̃1 = ΛA13, ∆̃2 = ΛA23, (B.17)
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that are spanned by Λ. By Assumption 1, it follows ∆̃1 = 0 and ∆̃2 = 0, and hence A13 = 0 and

A23 = 0. Then from (6):
f̃1,t = A−1

11 f1,t

f̃2,t = A−1
22 f2,t

g̃t = A−1
33 (gt − A31A

−1
11 f1,t − A32A

−1
22 f2,t)

. (B.18)

Then:

0 = Cov(g̃t, f̃1,t) = −A−1
33 (A31A

−1
11 + A32A

−1
22 Φ′)(A−1

11 )′,

0 = Cov(g̃t, f̃2,t) = −A−1
33 (A31A

−1
11 Φ + A32A

−1
22 )(A−1

22 )′.

Thus, we get:

A31A
−1
11 + A32A

−1
22 Φ′ = 0, (B.19)

A31A
−1
11 Φ + A32A

−1
22 = 0,

which implies:

A32A
−1
22 [IKH

− Φ′Φ] = 0.

Since the variance-covariance matrix of the factors in (2) is positive definite, the matrix IKH
− Φ′Φ is

invertible. Then, we get A32 = 0. From (B.19) it follows A31 = 0.

Q.E.D.
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APPENDIX C: Large sample properties

C.1 Proof of Proposition 3

Let us introduce a new notation for the matrices of HF and LF observations, factors, and errors, re-

spectively:

X =

 X1

X2

 , F =

 F1

F2

 , F̂ =

 F̂1

F̂2

 , ε =

 ε1

ε2

 ,
and the residuals matrices:

Ξ =

 Ξ1

Ξ2

 =

 MGX1

MGX2

 , Ξ̃ =

 Ξ̃1

Ξ̃2

 =

 MG̃X1

MG̃X2

 ,
where MG = I − PG, with PG = G(G′G)−1G′, and MG̃ = I − PG̃, with PG̃ = G̃(G̃′G̃)−1G̃′. We

define:

F ∗ = [F1 F2], F̂ ∗ = [F̂1 F̂2],

∆ = [∆1 ∆2], Ω = [Ω1 Ω2],

G∗ =

 G 0

0 G

 = I2 ⊗G, Ĝ∗ =

 Ĝ 0

0 Ĝ

 = I2 ⊗ Ĝ,

PG∗ =

 PG 0

0 PG

 , MG∗ =

 MG 0

0 MG

 .
The hat and tilde refer to the estimates in the current and previous iterations, respectively, in the

iterative estimation procedure.

The model (1) can be written as:

X1 = F1Λ′ +G∆′1 + ε1,

X2 = F2Λ′ +G∆′2 + ε2,

Y = F1Ω′1 + F2Ω′2 +GB′ + u,
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and, more compactly, as:

X = FΛ′ +G∗∆′ + ε, (C.1)

Y = F ∗Ω′ +GB′ + u. (C.2)

C.1.1 The exact recursive equation in step 1

The first step of the iterative estimation procedure consists in the estimation by PCA of the HF factor

from the HF data, given the estimated LF factor from the previous iteration. By reordering of the data,

from equation (11) we have:

1

2NHT
Ξ̃Ξ̃′F̂ = F̂ V̂F . (C.3)

The matrix Ξ̃ can be decomposed as:

Ξ̃ = MG̃∗X = MG∗X + (MG̃∗ −MG∗)X

= MG∗(FΛ′ + ε)− (PG̃∗ − PG∗)X

= FΛ′ + e− (PG̃∗ − PG∗)X,

where:

e = ε− PG∗(FΛ′ + ε). (C.4)

Therefore matrix Ξ̃Ξ̃′ can be expressed as:

Ξ̃Ξ̃′ = FΛ′ΛF ′ +

{
ee′ + (PG̃∗ − PG∗)XX

′(PG̃∗ − PG∗)

+FΛ′e′ + eΛF ′

−FΛ′X ′(PG̃∗ − PG∗)− (PG̃∗ − PG∗)XΛF ′

−eX ′(PG̃∗ − PG∗)− (PG̃∗ − PG∗)Xe
′
}
. (C.5)
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The equation (C.3) can be written as:

F̂ V̂F − F
(

Λ′Λ

NH

)(
F ′F̂

2T

)
=

1

2NHT

{
...

}
F̂ , (C.6)

where the terms in the curly brackets are the same as in equation (C.5). Since F ′F̂
2T

is invertible w.p.a. 1

from Lemma S.1, then:

F̂ V̂F

(
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

− F =
1

2NHT

{
...

}
F̂

(
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

.

Since V̂F is invertible w.p.a. 1 from Lemma S.2 we can define:

ĤF =

(
Λ′Λ

NH

)(
F ′F̂

2T

)
V̂ −1
F .

Then ĤF is invertible w.p.a. 1 and:

Ĥ−1
F = V̂F

(
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

.

We get:

F̂ Ĥ−1
F − F =

1

2NHT

{
ee′F̂ + FΛ′e′F̂ + eΛF ′F̂

−eX ′(PG̃∗ − PG∗)F̂ − (PG̃∗ − PG∗)Xe
′F̂

−FΛ′X ′(PG̃∗ − PG∗)F̂ − (PG̃∗ − PG∗)XΛF ′F̂

+(PG̃∗ − PG∗)XX
′(PG̃∗ − PG∗)F̂

}(
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

. (C.7)

C.1.2 The exact recursive equation in step 2

The second step of the iterative estimation procedure consists in the estimation by PCA of the LF

factor from the LF data, given the estimated HF factor from the first step (see equation (12)):

1

NLT
Ψ̂Ψ̂′Ĝ = ĜV̂G. (C.8)
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The matrix Ψ̂ can be decomposed as:

Ψ̂ = MF̂ ∗Y = (I − PF ∗)Y − (PF̂ ∗ − PF ∗)Y

= GB′ + v − (PF̂ ∗ − PF ∗)Y,

where:

v = u− PF ∗(GB′ + u). (C.9)

Therefore matrix Ψ̂Ψ̂′ can be expressed as:

Ψ̂Ψ̂′ = GB′BG′ +

{
vv′ + (PF̂ ∗ − PF ∗)Y Y

′(PF̂ ∗ − PF ∗)

+GB′v′ + vBG′

−GB′Y ′(PF̂ ∗ − PF ∗)− (PF̂ ∗ − PF ∗)Y BG
′

−vY ′(PF̂ ∗ − PF ∗)− (PF̂ ∗ − PF ∗)Y v
′

}
.

The equation (C.8) can be written as:

ĜV̂G −G
(
B′B

NL

)(
G′Ĝ

T

)
=

1

NLT

{
...

}
Ĝ. (C.10)

Since
G′Ĝ

T
is invertible from Lemma S.1, then:

ĜV̂G

(
G′Ĝ

T

)−1(
B′B

NL

)−1

−G =
1

NLT

{
...

}
Ĝ

(
G′Ĝ

T

)−1(
B′B

NL

)−1

.

Since V̂G is invertible w.p.a. 1 from Lemma S.2 we can define:

ĤG =

(
B′B

NL

)(
G′Ĝ

T

)
V̂ −1
G .
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Then ĤG is invertible w.p.a. 1 and:

Ĥ−1
G = V̂G

(
G′Ĝ

T

)−1(
B′B

NL

)−1

.

We get:

ĜĤ−1
G −G =

1

NLT

{
vv′Ĝ+GB′v′Ĝ+ vBG′Ĝ

−vY ′(PF̂ ∗ − PF ∗)Ĝ− (PF̂ ∗ − PF ∗)Y v
′Ĝ

−GB′Y ′(PF̂ ∗ − PF ∗)Ĝ− (PF̂ ∗ − PF ∗)Y BG
′Ĝ

+(PF̂ ∗ − PF ∗)Y Y
′(PF̂ ∗ − PF ∗)Ĝ

}(
G′Ĝ

T

)−1(
B′B

NL

)−1

. (C.11)

Equations (C.7) and (C.11) are a system of nonlinear implicit equations, which define the new esti-

mates F̂ and Ĝ in terms of the old estimate G̃. In the next two subsections we linearize these equations

around the true factor values F and G.

C.1.3 The linearized equation in step 1

Let us define matrix H̃G∗ as:

H̃G∗ =

 H̃G 0

0 H̃G

 ,

where H̃G =

(
B′B

NL

)(
G′G̃

T

)
Ṽ −1
G and ṼG is the matrix of eigenvalues in the PCA problem defining

G̃.

Lemma C.1. We have:

F̂ Ĥ−1
F − F = ηF −MG∗(G̃

∗H̃−1
G∗ −G

∗)D′ −G∗(G∗′G∗)−1(G̃∗H̃−1
G∗ −G

∗)′F

−F
(

Λ′Λ

NH

)
D

[
1

2T
(G̃∗H̃−1

G∗ −G
∗)′F

](
F ′F

2T

)−1(
Λ′Λ

NH

)−1

+RF (F̂ , G̃), (C.12)
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where

D = lim
NH→∞

(
Λ′Λ

NH

)−1(
Λ′∆

NH

)
= [D1 D2],

the term

ηF =
1

2NHT

(
ee′F̂ + FΛ′e′F̂

)(
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

+
1

NH

eΛ

(
Λ′Λ

NH

)−1

(C.13)

is such that

‖ηF‖/
√

2T = Op

(
1√

min(NH , 2T )

)
, (C.14)

and the reminder term RF (F̂ , G̃) is such that

‖RF (F̂ , G̃)‖/
√

2T = Op

(
1√

min(NH , T )
‖G̃∗H̃−1

G∗ −G
∗‖/
√

2T + (‖G̃∗H̃−1
G∗ −G

∗‖/
√

2T )2

)
+Op

(
1

2T
‖G̃∗H̃−1

G∗ −G
∗‖‖F̂ Ĥ−1

F − F‖
)

(C.15)

To prove Lemma C.1, we need the following two lemmas, which are proved in the supplementary

material:

Lemma C.2. We have:

(a)
1

NHT
‖εε′‖ = Op

(
1√

min(NH , T )

)
.

(b)
1

NHT
‖FΛ′ε′‖ = Op

(
1√
NH

)
.

(c)
1

NH

‖εΛ‖ = Op

(√
T

NH

)
.

(d)
1

NHT
‖ε∆G∗′‖ = Op

(
1√
NH

)
.

Lemma C.3. We have:

(a)
1

NHT
‖ee′‖ = Op

(
1√

min(NH , T )

)
.
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(b)
1

NHT
‖FΛ′e′‖ = Op

(
1√

min(NH , T )

)
.

(c)
1

NH

‖eΛ‖ = Op

(√
T

NH

)
.

(d)
1

NHT
‖e∆G∗′‖ = Op

(
1√

min(NH , T )

)
.

(e)
1

NHT
‖eε′‖ = Op

(
1√

min(NH , T )

)
.

Proof of Lemma C.1: i) Let us first show the decomposition in equation (C.12). By rearranging the

terms in the RHS of equation (C.7) we get:

F̂ Ĥ−1
F − F = ηF −

1

2T

[
F

(
XΛ

NH

)′
(PG̃∗ − PG∗)F̂

](
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

−(PG̃∗ − PG∗)
(
XΛ

NH

)(
Λ′Λ

NH

)−1

+ R1,F (F̂ , G̃), (C.16)

where ηF is defined in (C.13), and

R1,F (F̂ , G̃) = − 1

2NHT

{
eX ′(PG̃∗ − PG∗)− (PG̃∗ − PG∗)Xe

′

+(PG̃∗ − PG∗)XX
′(PG̃∗ − PG∗)

}
F̂

(
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

. (C.17)

Let us now consider the matrix XΛ/NH in the RHS of equation (C.16). By using the model of X in

equation (C.1):

XΛ

NH

= F

(
Λ′Λ

NH

)
+G∗

(
∆′Λ

NH

)
+

(
εΛ

NH

)
. (C.18)

Thus:

(
XΛ

NH

)(
Λ′Λ

NH

)−1

= F +G∗
(

∆′Λ

NH

)(
Λ′Λ

NH

)−1

+

(
εΛ

NH

)(
Λ′Λ

NH

)−1

= Z +G∗
[(

∆′Λ

NH

)(
Λ′Λ

NH

)−1

−D′
]

+

(
εΛ

NH

)(
Λ′Λ

NH

)−1

, (C.19)
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where:

Z = F +G∗D′. (C.20)

Then the second and third terms in the RHS of equation (C.16) become:

1

2T

[
F

(
XΛ

NH

)′
(PG̃∗ − PG∗)F̂

](
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

+ (PG̃∗ − PG∗)
(
XΛ

NH

)(
Λ′Λ

NH

)−1

=
1

2T

[
F

(
Λ′Λ

NH

)
Z ′(PG̃∗ − PG∗)F̂

](
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

+ (PG̃∗ − PG∗)Z + R2,F (F̂ , G̃),

(C.21)

where:

R2,F (F̂ , G̃) =
1

2T
F

(
Λ′Λ

NH

)[(
Λ′Λ

NH

)−1(
Λ′∆

NH

)
−D

]
G∗′(PG̃∗ − PG∗)F̂

(
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

+
1

2T
F

(
Λ′ε′

NH

)
(PG̃∗ − PG∗)F̂

(
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

+(PG̃∗ − PG∗)
{
G∗
[(

∆′Λ

NH

)(
Λ′Λ

NH

)−1

−D′
]

+

(
εΛ

NH

)(
Λ′Λ

NH

)−1}
. (C.22)

Let us now consider the first two terms in the RHS of equation (C.21). In order to linearize the term

PG̃∗−PG∗ , we need the following Lemma C.4. We use the operator norm ‖·‖op, which, for the generic

(m× n) matrix A, is defined as (see, e.g., Horn and Johnson (2013)):

‖A‖op = sup
‖x‖=1

‖Ax‖ . (C.23)

Lemma C.4. Let Â and A be two m× n matrices, where A is full column rank and Â. Then, if

‖(A′A)−1‖1/2
op ‖Â− A‖op <

√
1 + %− 1,

for some % ∈ (0, 1), we have:

PÂ − PA = MA(Â− A)(A′A)−1A′ + A(A′A)−1(Â− A)′MA + RP (Â, A),
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where PA = A(A′A)−1A′ and MA = Im − PA, and the reminder term RP (Â, A) is such that:

‖RP (Â, A)‖op ≤ C
(
‖(A′A)−1‖op + ‖(A′A)−1‖2

op

)
‖Â− A‖2

op,

with constant C <∞ is independent of A and Â, but may depend on %.

The proof of Lemma C.4 is given in the supplementary material. By using PG̃∗ H̃−1
G∗

= PG̃∗ and

applying Lemma C.4 with Â = G̃∗H̃−1
G∗ and A = G∗, we have:

PG̃∗ − PG∗ = MG∗(G̃
∗H̃−1

G∗ −G
∗)(G∗′G∗)−1G∗′

+G∗(G∗′G∗)−1(G̃∗H̃−1
G∗ −G

∗)′MG∗ + RP (G̃∗, G∗), (C.24)

where

‖RP (G̃∗, G∗)‖op = O(‖G̃∗H̃−1
G∗ −G

∗‖2
op‖(G∗′G∗)−1G∗′‖2

op). (C.25)

Then:

(PG̃∗ − PG∗)Z = MG∗(G̃
∗H̃−1

G∗ −G
∗)D′

+G∗(G∗′G∗)−1(G̃∗H̃−1
G∗ −G

∗)′F + R3,F (G̃), (C.26)

where:

R3,F (G̃) = MG∗(G̃
∗H̃−1

G∗ −G
∗)(G∗′G∗)−1G∗′F

−G∗(G∗′G∗)−1(G̃∗H̃−1
G∗ −G

∗)′PG∗F + RP (G̃∗, G∗)Z, (C.27)

and:

Z ′(PG̃∗ − PG∗)F̂ = D(G̃∗H̃−1
G∗ −G

∗)′FĤF

+

{
F ′(G̃∗H̃−1

G∗ −G
∗)(G∗′G∗)−1G∗′F̂ + R3,F (G̃)′F̂

}
+D(G̃∗H̃−1

G∗ −G
∗)′(F̂ − FĤF − PG∗F̂ ). (C.28)
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Rewriting F̂ − FĤF − PG∗F̂ as:

F̂ − FĤF − PG∗F̂ = F̂ − FĤF − PG∗(F̂ − FĤF )− PG∗FĤF

= [MG∗(F̂ Ĥ
−1
F − F )− PG∗F ] ĤF ,

we get:

Z ′(PG̃∗ − PG∗)F̂ = D(G̃∗H̃−1
G∗ −G

∗)′FĤF

+

{
F ′(G̃∗H̃−1

G∗ −G
∗)(G∗′G∗)−1G∗′F̂ + R3,F (G̃)′F̂

}
+D(G̃∗H̃−1

G∗ −G
∗)′(MG∗(F̂ Ĥ

−1
F − F )− PG∗F ) ĤF . (C.29)

By plugging equations (C.21), (C.26) and (C.29) into the RHS of equation (C.16), we get:

F̂ Ĥ−1
F − F = ηF −MG∗(G̃

∗H̃−1
G∗ −G

∗)D′ −G∗(G∗′G∗)−1(G̃∗H̃−1
G∗ −G

∗)′F

−F
(

Λ′Λ

NH

)
D

[
1

2T
(G̃∗H̃−1

G∗ −G
∗)′F

]
ĤF

(
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

+R1,F (F̂ , G̃)−R2,F (G̃)−R3,F (G̃) + R4,F (F̂ , G̃), (C.30)

where:

R4,F (F̂ , G̃) = −F
(

Λ′Λ

NH

)[
1

2T
F ′(G̃∗H̃−1

G∗ −G
∗)(G∗′G∗)−1G∗′F̂ +

1

2T
R3,F (G̃)′F̂

+
1

2T
D(G̃∗H̃−1

G∗ −G
∗)′(MG∗(F̂ Ĥ

−1
F − F )− PG∗F ) ĤF

](
F ′F̂

2T

)−1(
Λ′Λ

NH

)−1

.

(C.31)

Let us expand the matrix (F ′F̂ /2T )−1 in equation (C.30). By using F̂ = [F + (F̂ Ĥ−1
F − F )]Ĥ , we

have:

(
F ′F̂

T

)−1

=
[
(F ′F/T )

(
IKH

+ (F ′F/T )−1F ′(F̂ Ĥ−1
F − F )/T

)
ĤF

]−1

= Ĥ−1
F

(
IKH

+ A (F, F̂ )
)−1

(F ′F/T )−1, (C.32)
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where A (F, F̂ ) =

(
F ′F

2T

)−1
F ′(F̂ Ĥ−1

F − F )

T
. Equation (C.32) allows us to rewrite the RHS of

equation (C.30) as:

F̂ Ĥ−1
F − F = ηF −MG∗(G̃

∗H̃−1
G∗ −G

∗)D′ −G∗(G∗′G∗)−1(G̃∗H̃−1
G∗ −G

∗)′F

−F
(

Λ′Λ

NH

)
D

[
1

2T
(G̃∗H̃−1

G∗ −G
∗)′F

](
F ′F

2T

)−1(
Λ′Λ

NH

)−1

+ RF (F̂ , G̃),

(C.33)

where:

RF (F̂ , G̃) = R1,F (F̂ , G̃)−R2,F (G̃)−R3,F (G̃) + R4,F (F̂ , G̃)−R5,F (F̂ , G̃), (C.34)

with:

R5,F (F̂ , G̃) = F

(
Λ′Λ

NH

)
D

[
1

2T
(G̃∗H̃−1

G∗ −G
∗)′F

]
×
[(

IKH
+ A (F, F̂ )

)−1

− IKH

](
F ′F

2T

)−1(
Λ′Λ

NH

)−1

. (C.35)

(ii) Let us now show the upper bound on ‖ηF‖ given in equation (C.14). From equation (C.13),

Lemma S.1 and Assumption H.2, we have:

‖ηF‖ ≤
1

2NHT

(
‖ee′F̂‖+ ‖FΛ′e′F̂‖

)
Op(1) +Op

(
1

NH

‖eΛ‖
)

≤ 1

2NHT

(
‖ee′‖+ ‖FΛ′e′‖

)
Op(
√
T ) +Op

(
1

NH

‖eΛ‖
)
, (C.36)

where the last inequality follows from F̂ ′F̂ /(2T ) = IKF
, as F̂ is estimated by PCA. Using inequality

(C.36) and Lemma C.3 we get T−1/2‖ηF‖ = Op

(
1√

min(NH , T )

)
.

(iii) Finally, we prove the upper bound on ‖RF (F̂ , G̃)‖ given in equation (C.15). We bound

separately the norm of each term in the RHS of equation (C.34). We use the following result linking

the operator norm and the Frobenius norm of a generic (m× n) matrix A (see, e.g. Horn and Johnson
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(2013)):

‖A‖op ≤ ‖A‖ ≤
√

min(m,n) ‖A‖op. (C.37)

Using KH ≤ T and inequality (C.37), from equation (C.17) we get:

1√
T
‖R1,F (F̂ , G̃)‖ ≤

√
KH

1√
T
‖R1,F (F̂ , G̃)‖op

≤
√
KH

{
2

1

2NHT
‖eX ′‖op + ‖PG̃∗ − PG∗‖op

1

2NHT
‖XX ′‖op

}
×‖PG̃∗ − PG∗‖op

∥∥∥∥ F̂√
T

∥∥∥∥
op

∥∥∥∥(F ′F̂2T

)−1∥∥∥∥
op

∥∥∥∥(Λ′Λ

NH

)−1∥∥∥∥
op

.

Using the result in (C.37) and Lemma S.1 we have:

∥∥∥∥(F ′F̂2T

)−1∥∥∥∥
op

≤
∥∥∥∥(F ′F̂2T

)−1∥∥∥∥ = Op(1), (C.38)∥∥∥∥(B′BNH

)−1∥∥∥∥
op

≤
∥∥∥∥(B′BNH

)−1∥∥∥∥ = O(1), (C.39)∥∥∥∥ F̂√
T

∥∥∥∥
op

≤
∥∥∥∥ F̂√

T

∥∥∥∥ = Op(1). (C.40)

This allows us to write:

1√
T
‖R1,F (F̂ , G̃)‖ = Op

(
1

2NHT
‖eX ′‖op‖PG̃∗ − PG∗‖op

)
+Op

(
1

2NHT
‖XX ′‖op‖PG̃∗ − PG∗‖

2
op

)
.

(C.41)

Let us bound each term in the RHS of equation (C.41). Using the expression for PG̃∗−PG∗ in equation

(C.24) and the triangular inequality, we have:

‖PG̃∗ − PG∗‖op ≤ 2‖MG∗‖op‖G̃∗H̃−1
G∗ −G

∗‖op‖(G∗′G∗)−1G∗′‖op

+Op(‖G̃∗H̃−1
G∗ −G

∗‖2
op‖(G∗′G∗)−1G∗′‖2

op).
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Moreover we have:

‖(G∗′G∗)−1G∗′‖op ≤
1√
T

∥∥∥∥(G∗′G∗T

)−1∥∥∥∥∥∥∥∥G∗′√T
∥∥∥∥

= Op

(
1√
T

)
.

This result and ‖MG∗‖op = 1 allow us to conclude:

‖PG̃∗ − PG∗‖op = Op

(
1√
T
‖G̃∗H̃−1

G∗ −G
∗‖op +

1

T
‖G̃∗H̃−1

G∗ −G
∗‖2
op

)
= Op

(
1√
T
‖G̃∗H̃−1

G∗ −G
∗‖
)
. (C.42)

Using the definition of X in equation (C.1) and Lemma C.3, we can bound the term ‖eX ′‖op in the

RHS of equation (C.41) as:

1

2NHT
‖eX ′‖op ≤

1

2NHT
‖eX ′‖

≤ 1

2NHT
‖eΛF ′‖+

1

2NHT
‖e∆G∗′‖+

1

2NHT
‖eε′‖

= Op

(
1√

min(NH , T )

)
. (C.43)

From the definition of X in equation (C.1) and Lemma C.2, we can bound the term ‖XX ′‖op in

equation (C.41) as:

1

2NHT
‖XX ′‖op ≤

1

2NHT
‖XX ′‖

≤ 1

NHT
‖FΛ′ΛF ′‖+

1

NHT
‖FΛ′∆G∗′‖+

1

NHT
‖FΛ′ε′‖

+
1

NHT
‖G∗∆′ΛF ′‖+

1

NHT
‖G∗∆′∆G∗′‖+

1

NHT
‖G∗∆′ε′‖

+
1

NHT
‖εΛF ′‖+

1

NHT
‖ε∆G∗′‖+

1

NHT
‖εε′‖

=
1

NHT
‖FΛ′ΛF ′‖+

1

NHT
‖G∗∆′∆G∗′‖+

1

NHT
‖εε′‖

+
1

NHT
‖FΛ′∆G∗′‖+Op

(
1√

min(NH , T )

)
. (C.44)
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The first term in the RHS of the last equation can be bounded as:

1

NHT
‖FΛ′ΛF ′‖ ≤

∥∥∥∥ F√
T

∥∥∥∥∥∥∥∥Λ′Λ

NH

∥∥∥∥∥∥∥∥ F√
T

∥∥∥∥
= Op(1). (C.45)

The second term in the RHS of equation (C.44) can be bounded as:

1

NHT
‖G∗∆′∆G∗′‖ ≤

∥∥∥∥ G∗√T
∥∥∥∥∥∥∥∥∆′∆

NH

∥∥∥∥∥∥∥∥G∗′√T
∥∥∥∥

= Op(1). (C.46)

Analogous arguments allow us to bound the remaining terms in the RHS of equation (C.44), and to

conclude that:

1

2NHT
‖XX ′‖op = Op(1). (C.47)

Collecting results (C.41), (C.42), (C.43) and (C.47) we get:

1√
T
‖R1,F (F̂ , G̃)‖op = Op

(
1√

min(NH , T )

(
1√
T
‖G̃∗H̃−1

G∗ −G
∗‖
))

+ Op

((
1√
T
‖G̃∗H̃−1

G∗ −G
∗‖
)2)

. (C.48)

Let us now bound the term R2,F (F̂ , G̃) in equation (C.22). Using KH < T and inequalities in (C.37)
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we get:

1√
T
‖R2,F (F̂ , G̃)‖ ≤

√
KH

1√
T
‖R2,F (F̂ , G̃)‖op

≤
√
KH

∥∥∥∥ F√
T

∥∥∥∥
op

∥∥∥∥Λ′Λ

NH

∥∥∥∥
op

∥∥∥∥(Λ′Λ

NH

)−1(
Λ′∆

NH

)
−D

∥∥∥∥
op

×
∥∥∥∥G∗′√T

∥∥∥∥
op

‖PG̃∗ − PG∗‖op
∥∥∥∥ F̂√

T

∥∥∥∥
op

∥∥∥∥(F ′F̂2T

)−1∥∥∥∥
op

∥∥∥∥(Λ′Λ

NH

)−1∥∥∥∥
op

+
√
KH

∥∥∥∥ F√
T

∥∥∥∥
op

∥∥∥∥ Λ′ε′

NH

√
T

∥∥∥∥
op

‖PG̃∗ − PG∗‖op
∥∥∥∥ F̂√

T

∥∥∥∥
op

×
∥∥∥∥(F ′F̂2T

)−1∥∥∥∥
op

∥∥∥∥(Λ′Λ

NH

)−1∥∥∥∥
op

+
√
KH‖PG̃∗ − PG∗‖op

×
{∥∥∥∥ G∗√T

∥∥∥∥
op

∥∥∥∥(∆′Λ

NH

)(
Λ′Λ

NH

)−1

−D′
∥∥∥∥
op

+

∥∥∥∥ εΛ

NH

√
T

∥∥∥∥
op

∥∥∥∥(Λ′Λ

NH

)−1∥∥∥∥
op

}
.

≤ Op

(∥∥∥∥(Λ′Λ

NH

)−1(
Λ′∆

NH

)
−D

∥∥∥∥
op

‖PG̃∗ − PG∗‖op

)

+Op

(∥∥∥∥ Λ′ε′

NH

√
T

∥∥∥∥
op

‖PG̃∗ − PG∗‖op

)
.

Using assumptions H.1 and H.2, and Lemmas S.1, S.2 and C.2, and equation (C.42) we conclude that:

1√
T
‖R2,F (F̂ , G̃)‖ =

1√
NH

Op

(
1√
T
‖G̃∗H̃−1

G∗ −G
∗‖
)
.

Analogous arguments allow to bound the term R3,F (G̃) from equation (C.27) as:

1√
T
‖R3,F (G̃)‖ ≤

√
KH

1√
T
‖R3,F (G̃)‖op

≤
√
KH

1√
T
‖MG∗‖op‖G̃∗H̃−1

G∗ −G
∗‖op

∥∥∥∥(G∗′G∗T

)−1∥∥∥∥
op

∥∥∥∥G∗′FT
∥∥∥∥
op

+
√
KH

1√
T

∥∥∥∥ G∗√T
∥∥∥∥
op

∥∥∥∥(G∗′G∗T

)−1∥∥∥∥
op

‖G̃∗H̃−1
G∗ −G

∗‖op
∥∥∥∥PG∗F√T

∥∥∥∥
op

+
√
KH

1√
T
‖RP (G̃∗, G∗)Z‖op

≤ 1√
T
Op

(
1√
T
‖G̃∗H̃−1

G∗ −G
∗‖
)

+Op

(∥∥∥∥ 1√
T
Z

∥∥∥∥‖RP (G̃∗, G∗)‖
)
,
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since: ∥∥∥∥PG∗F√T
∥∥∥∥
op

≤
∥∥∥∥PG∗F√T

∥∥∥∥ ≤ ∥∥∥∥ G∗√T
∥∥∥∥∥∥∥∥(G∗′G∗T

)−1∥∥∥∥∥∥∥∥G∗′FT
∥∥∥∥ = Op

(
1√
T

)
.

From the definition of Z in equation (C.20) and Assumption H.1 it follows that:∥∥∥∥ 1√
T
Z

∥∥∥∥ = Op(1).

From the bound of RP (G̃∗, G∗) in equation (C.25), we get:

‖RP (G̃∗, G∗)‖op ≤ Op

(
1

T
‖G̃∗H̃−1

G∗ −G
∗‖2

∥∥∥∥(G∗′G∗T

)−1∥∥∥∥2 ∥∥∥∥G∗′√T
∥∥∥∥2)

= Op

(
1

T
‖G̃∗H̃−1

G∗ −G
∗‖2

)
,

which allows to conclude that:

1√
T
‖R3,F (G̃)‖ = Op

(
1√
T

(
1√
T
‖G̃∗H̃−1

G∗ −G
∗‖
))

+Op

(
1

T
‖G̃∗H̃−1

G∗ −G
∗‖2

)
.

The term R4,F (F̂ , G̃) can be bounded as:

1√
T
‖R4,F (F̂ , G̃)‖ ≤

√
KH

1√
T
‖R4,F (F̂ , G̃)‖op

≤
∥∥∥∥ F√

T

∥∥∥∥
op

∥∥∥∥Λ′Λ

NH

∥∥∥∥
op

{∥∥∥∥ F√
T

∥∥∥∥
op

1

2
√
T
‖G̃∗H̃−1

G∗ −G
∗‖op

∥∥∥∥(G∗′G∗T

)−1∥∥∥∥∥∥∥∥G∗′F̂T
∥∥∥∥
op

+
1

2
√
T
‖R3,F (G̃)‖op

∥∥∥∥ F̂√
T

∥∥∥∥
op

+‖D‖op
1

2T
‖G̃∗H̃−1

G∗ −G
∗‖op‖MG∗‖op‖F̂ Ĥ−1

F − F‖op‖ĤF‖op

+
1

2
√
T
‖G̃∗H̃−1

G∗ −G
∗‖op

∥∥∥∥PG∗F√T
∥∥∥∥
op

‖ĤF‖op

}
×
∥∥∥∥(F ′F̂2T

)−1∥∥∥∥
op

∥∥∥∥(Λ′Λ

NH

)−1∥∥∥∥
op

.

= Op

(
1√
T

(
1√
T
‖G̃∗H̃−1

G∗ −G
∗‖
))

+Op

(
1

T
‖G̃∗H̃−1

G∗ −G
∗‖‖F̂ Ĥ−1

F − F‖
)

+Op

(
1

T
‖G̃∗H̃−1

G∗ −G
∗‖2

)
.
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Finally, the term R5,F (F̂ , G̃) in equation (C.35) can be bounded as:

1√
2T
‖R5,F (F̂ , G̃)‖ ≤

∥∥∥∥ F√
2T

∥∥∥∥∥∥∥∥Λ′Λ

NH

∥∥∥∥‖D‖∥∥∥∥ 1√
2T

(G̃∗H̃−1
G∗ −G

∗)

∥∥∥∥∥∥∥∥ F√
2T

∥∥∥∥
×‖(IKH

+ A (F, F̂ ))−1 − IKH
‖
∥∥∥∥(F ′F2T

)−1∥∥∥∥∥∥∥∥(Λ′Λ

NH

)−1∥∥∥∥
≤ Op

(
1√
2T
‖G̃∗H̃−1

G∗ −G
∗‖
)
‖(IKH

+ A (F, F̂ ))−1 − IKH
‖.

(C.49)

Let us bound the term (I2KH
+ A (F, F̂ ))−1 − I2KH

. Assuming that

‖A (F, F̂ )‖ =

∥∥∥∥(F ′F2T

)−1
1

2T
F ′(F̂ Ĥ−1

F − F )

∥∥∥∥ ≤ ρ,

for any constant ρ < 1, the series representation of the matrix inversion mapping, we have

‖(IKH
+ A (F, F̂ ))−1 − IKH

‖ ≤
∞∑
j=1

‖A (F, F̂ )‖j ≤ 1

1− ρ
‖A (F, F̂ )‖.

Therefore, we have:

‖(IKH
+ A (F, F̂ ))−1 − IKH

‖ = Op(‖A (F, F̂ )‖) = Op

(
1√
2T
‖F̂ Ĥ−1

F − F‖
)
,

which, together with equation (C.49) property (C.37) of the operator norm implies:

1√
2T
‖R5,F (F̂ , G̃)‖ = Op

(
1

2T
‖G̃∗H̃−1

G∗ −G
∗‖‖F̂ Ĥ−1

F − F‖
)
.

Q.E.D.
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C.1.4 The linearized equation in step 2

Lemma C.5. We have:

ĜĤ−1
G −G = η∗G −MF ∗(F̂

∗Ĥ−1
F ∗ − F

∗)W ′ − F ∗(F ∗′F ∗)−1(F̂ ∗Ĥ−1
F ∗ − F

∗)′G

−G
(
B′B

NL

)
W

[
1

T
(F̂ ∗Ĥ−1

F ∗ − F
∗)′G

](
G′G

T

)−1(
B′B

NL

)−1

+R∗G(F̂ , Ĝ), (C.50)

where

W = lim
NL→∞

(
B′B

NL

)−1(
B′Ω

NL

)
= [W1 W2],

the term

η∗G =
1

NLT

(
vv′Ĝ+GB′v′Ĝ

)(
G′Ĝ

T

)−1(
B′B

NL

)−1

+
1

NL

vB

(
B′B

NL

)−1

(C.51)

is such that

‖η∗G‖/
√
T = Op

(
1√

min(NL, T )

)
, (C.52)

and the reminder term R∗G(F̂ , Ĝ) is such that

‖R∗G(F̂ , Ĝ)‖/
√
T = Op

(
1√

min(NL, T )
‖F̂ ∗Ĥ−1

F ∗ − F
∗‖/
√
T + (‖F̂ ∗Ĥ−1

F ∗ − F
∗‖/
√
T )2

)
+Op

(
1

T
‖F̂ ∗Ĥ−1

F ∗ − F
∗‖‖ĜĤ−1

G −G‖
)

(C.53)

Proof: The proof is analogous to the proof of Lemma C.1, and is detailed in the supplementary mate-

rial.

C.1.5 Writing the linearized equations by components

The recursive equation (C.12) involves the “compound” form G̃∗ of the estimated LF factor in the

RHS. Similarly, the recursive equation (C.50) involves the form F̂ ∗ of the estimated HF factor in the
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RHS. Let us now rewrite those equations such that their RHS involve estimates G̃ and F̂ , respectively.

This simplifies the combined use of the two equations later on.

By using the definition of F , G∗, MG∗ and their estimates, equation (C.12) can be written in

components as: F̂1Ĥ
−1
F − F1

F̂2Ĥ
−1
F − F2

 =

 ηF,1

ηF,2

−
 MG 0

0 MG

 G̃H̃−1
G −G 0

0 G̃H̃−1
G −G

 D′1

D′2



−

 G(G′G)−1 0

0 G(G′G)−1

 (G̃H̃−1
G −G)′F1

(G̃H̃−1
G −G)′F2



−

 F1

F2

(Λ′Λ

NH

)
[D1 D2]

1

2T

 (G̃H̃−1
G −G)′F1

(G̃H̃−1
G −G)′F2

(F ′F
2T

)−1(
Λ′Λ

NH

)−1

+

 RF,1(F̂ , G̃)

RF,2(F̂ , G̃)



=

 ηF,1

ηF,2

−
 MG(G̃H̃−1

G −G)D′1

MG(G̃H̃−1
G −G)D′2

−
 G(G′G)−1(G̃H̃−1

G −G)′F1

G(G′G)−1(G̃H̃−1
G −G)′F2



− 1

2T

 F1(Λ′Λ/NH)D1 F1(Λ′Λ/NH)D2

F2(Λ′Λ/NH)D1 F2(Λ′Λ/NH)D2


×

 (G̃H̃−1
G −G)′F1

(G̃H̃−1
G −G)′F2

(F ′F
2T

)−1(
Λ′Λ

NH

)−1

+

 RF,1(F̂ , G̃)

RF,2(F̂ , G̃)

 .
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Therefore we have:

F̂1Ĥ
−1
F − F1 = ηF,1 −MG(G̃H̃−1

G −G)D′1 −G(G′G)−1(G̃H̃−1
G −G)′F1

− 1

2T
F1

(
Λ′Λ

NH

)[
D1(G̃H̃−1

G −G)′F1 +D2(G̃H̃−1
G −G)′F2

](
F ′F

2T

)−1(
Λ′Λ

NH

)−1

+RF,1(F̂ , G̃),

(C.54)

and:

F̂2Ĥ
−1
F − F2 = ηF,2 −MG(G̃H̃−1

G −G)D′2 −G(G′G)−1(G̃H̃−1
G −G)′F2

− 1

2T
F2

(
Λ′Λ

NH

)[
D1(G̃H̃−1

G −G)′F1 +D2(G̃H̃−1
G −G)′F2

](
F ′F

2T

)−1(
Λ′Λ

NH

)−1

+RF,2(F̂ , G̃).

(C.55)

Similarly, by using the definition of F ∗, MF ∗ and their estimates, equation (C.50) can be written as:

ĜĤ−1
G −G = η∗G −MF ∗ [(F̂1Ĥ

−1
F − F1)W ′

1 + (F̂2Ĥ
−1
F − F2)W ′

2]

−F ∗(F ∗′F ∗)−1

 (F̂1Ĥ
−1
F − F1)′G

(F̂2Ĥ
−1
F − F2)′G


− 1

T
G

(
B′B

NL

)
[W1(F̂1Ĥ

−1
F − F1)′G+W2(F̂2Ĥ

−1
F − F2)′G]

(
G′G

T

)−1(
B′B

NL

)−1

+R∗G(F̂ , G̃).

(C.56)

C.1.6 The system of linearized equations when KH = KL = 1

Let us now focus on the case with one-dimensional HF and LF factors, i.e., KH = KL = 1. Then,
F ′F

2T
,
G′G

T
, ĤF , ĤG,

Λ′Λ

NH

and
B′B

NL

are scalars. Moreover, matrices D and W become (1 × 2)
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matrices:

D
(1×2)

= [d1 d2], dj = lim
NH→∞

(
Λ′Λ

NH

)−1(
Λ′∆j

NH

)
, j = 1, 2,

W
(1×2)

= [w1 w2], wj = lim
NL→∞

(
B′B

NL

)−1(
B′Ωj

NL

)
, j = 1, 2.

We rename hH and hG the scalars HF and HG. This allows to re-write the equation for F̂1Ĥ
−1
F − F1

in (C.54) as:

F̂1ĥ
−1
F − F1 = ηF,1 − d1MG(G̃h̃−1

G −G)−G(G′G)−1(G̃h̃−1
G −G)′F1

− 1

2T
d1F1(G̃h̃−1

G −G)′F1

(
F ′F

2T

)−1

− 1

2T
d2F1(G̃h̃−1

G −G)′F2

(
F ′F

2T

)−1

+RF,1(F̂ , G̃),

= ηF,1 −
[
d1MG +G(G′G)−1F ′1 +

(
F ′F

2T

)−1
d1

2T
F1F

′
1 +

(
F ′F

2T

)−1
d2

2T
F1F

′
2

]
×(G̃h̃−1

G −G) + RF,1(F̂ , G̃). (C.57)

Similarly, the equation for F̂2Ĥ
−1
F − F2 in (C.55) becomes:

F̂2ĥ
−1
F − F2 = ηF,2 −

[
d2MG +G(G′G)−1F ′2 +

(
F ′F

2T

)−1
d1

2T
F2F

′
1 +

(
F ′F

2T

)−1
d2

2T
F2F

′
2

]
×(G̃h̃−1

G −G) + RF,2(F̂ , G̃). (C.58)
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Let us now consider the equation for the LF factor. From equation (C.56) we have:

Ĝĥ−1
G −G = η∗G −MF ∗ [w1(F̂1ĥ

−1
F − F1) + w2(F̂2ĥ

−1
F − F2)]

−F ∗(F ∗′F ∗)−1

 (F̂1ĥ
−1
F − F1)′G

(F̂2ĥ
−1
F − F2)′G


− 1

T
G [w1(F̂1ĥ

−1
F − F1)′G+ w2(F̂2ĥ

−1
F − F2)′G]

(
G′G

T

)−1

+ R∗G(F̂ , Ĝ)

= η∗G −
[
w1

(
MF ∗ +

(
G′G

T

)−1
1

T
GG′

)
+ F ∗(F ∗′F ∗)−1e1G

′
]
(F̂1ĥ

−1
F − F1)

−
[
w2

(
MF ∗ +

(
G′G

T

)−1
1

T
GG′

)
+ F ∗(F ∗′F ∗)−1e2G

′
]
(F̂2ĥ

−1
F − F2) + R∗G(F̂ , Ĝ),

(C.59)

where e1 = (1, 0)′ and e2 = (0, 1)′. The last equation can be written as:

Ĝĥ−1
G −G = η∗G −LG,F1(F̂1ĥ

−1
F − F1)−LG,F2(F̂2ĥ

−1
F − F2) + R∗G(Ĝ, F̂ ), (C.60)

where:

LG,F1 = w1

(
MF ∗ +

(
G′G

T

)−1
1

T
GG′

)
+ F ∗(F ∗′F ∗)−1e1G

′,

LG,F2 = w2

(
MF ∗ +

(
G′G

T

)−1
1

T
GG′

)
+ F ∗(F ∗′F ∗)−1e2G

′,

and the reminder R∗G(Ĝ, F̂ ) is as in equation (C.53). On the other hand, equations (C.57) and (C.58)

can be expressed as:

F̂1ĥ
−1
F − F1 = ηF1 −LF1,G (G̃h̃−1

G −G) + RF,1(F̂ , G̃), (C.61)

F̂2ĥ
−1
F − F2 = ηF2 −LF2,G (G̃h̃−1

G −G) + RF,2(F̂ , G̃), (C.62)
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where:

LF1,G = d1MG +G(G′G)−1F ′1 +

(
F ′F

2T

)−1
d1

2T
F1F

′
1 +

(
F ′F

2T

)−1
d2

2T
F1F

′
2,

LF2,G = d2MG +G(G′G)−1F ′2 +

(
F ′F

2T

)−1
d1

2T
F2F

′
1 +

(
F ′F

2T

)−1
d2

2T
F2F

′
2.

Substituting equations (C.61) and (C.62) in equation (C.60), we get:

Ĝh−1
G −G = ηG + LG(G̃h̃−1

G −G) + RG(Ĝ, G̃, F̂ ), (C.63)

where:

ηG = η∗G −LG,F1ηF1 −LG,F2ηF2 , (C.64)

LG = LG,F1LF1,G + LG,F2LF2,G, (C.65)

and the reminder term is:

RG(Ĝ, G̃, F̂ ) = R∗G(F̂ , Ĝ)−LG,F1RF,1(F̂ , G̃)−LG,F2RF,2(F̂ , G̃). (C.66)

We can bound matrix LG,F1 as:

‖LG,F1‖op ≤ |w1|
{
‖MF ∗‖op +

∥∥∥∥(G′GT
)−1∥∥∥∥

op

∥∥∥∥ 1

T
GG′

∥∥∥∥
op

}
+

∥∥∥∥ F ∗√T
∥∥∥∥
op

∥∥∥∥(F ∗′F ∗T

)−1∥∥∥∥
op

‖e1‖op
∥∥∥∥ G√

T

∥∥∥∥
op

= Op(1). (C.67)

Analogous arguments allow to prove that ‖LG,F2‖op = Op(1), ‖LF1,G‖op = Op(1) and ‖LF2,G‖op =

Op(1). These results, together with Lemmas C.1 and C.5, allow to bound the term ηG as:

‖ηG‖op√
T

≤ 1√
T
‖η∗G‖op − ‖LG,F1‖op

1√
T
‖ηF1‖op − ‖LG,F2‖op

1√
T
‖ηF2‖op

= Op

(
1√

min(NL, NH , T )

)
,
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and hence:

‖ηG‖√
T

= Op

(
1√

min(NL, NH , T )

)
. (C.68)

Using the results in equations (C.15) and (C.53), the reminder term RG(Ĝ, G̃, F̂ ) in equation (C.66)

can be bounded as:

‖RG(Ĝ, G̃, F̂ )‖op√
T

≤ ‖R∗G(Ĝ, F̂ )‖op√
T

+ ‖LG,F1‖op
‖RF,1(F̂ , G̃)‖op√

T
+ ‖LG,F2‖op

‖RF,2(F̂ , G̃)‖op√
T

= Op

(
1√

min(NL, T )
‖F̂ ∗Ĥ−1

F ∗ − F
∗‖/
√
T + (‖F̂ ∗Ĥ−1

F ∗ − F
∗‖/
√
T )2

)
+Op

(
1

T
‖F̂ ∗Ĥ−1

F ∗ − F
∗‖‖ĜĤ−1

G −G‖
)

+Op

(
1√

min(NH , T )
‖G̃∗H̃−1

G∗ −G
∗‖/
√

2T + (‖G̃∗H̃−1
G∗ −G

∗‖/
√

2T )2

)
+Op

(
1

2T
‖G̃∗H̃−1

G∗ −G
∗‖‖F̂ Ĥ−1

F − F‖
)
. (C.69)

Equations (C.60), (C.61) and (C.62) can be stacked together in the following way:
IT 0 0

0 IT 0

LG,F1 LG,F2 IT

 υ̂ = ηυ +


0 0 −LF1,G

0 0 −LF2,G

0 0 0

 υ̃ + Rυ(υ̂, υ̃) (C.70)

where:

υ̂ =


F̂1ĥ

−1
F − F1

F̂2ĥ
−1
F − F2

Ĝĥ−1
G −G

 , υ̃ =


F̃1h̃

−1
F − F1

F̃2h̃
−1
F − F2

G̃h̃−1
G −G

 ,

ηυ =


ηF1

ηF2

η∗G

 , Rυ(υ̂, υ̃) =


RF,1(F̂ , G̃)

RF,2(F̂ , G̃)

R∗G(Ĝ, F̂ )

 . (C.71)
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From equations (C.14), (C.15), (C.52), (C.53) we get:

‖ηυ‖√
T

= Op

(
1√

min(NL, NH , T )

)
, (C.72)

‖Rυ(υ̂, υ̃)‖√
T

= Op

(
1√

min(NL, NH , T )
+

(
‖υ̃‖√
T

)2

+

(
‖υ̂‖√
T

)2)
. (C.73)

Moreover, as


IT 0 0

0 IT 0

LG,F1 LG,F2 IT


−1

=


IT 0 0

0 IT 0

−LG,F1 −LG,F2 IT

 ,

the system (C.70) and using ‖G̃∗H̃−1
G∗ − G

∗‖/
√
T ≤ C and ‖F̂ ∗H̃−1

F ∗ − F
∗‖/
√
T ≤ C w.p.a. 1, for

some C, can be rewritten as:

υ̂ = η?υ + Lυυ̃ + R?
υ(υ̂, υ̃) (C.74)

where:

η?υ =


IT 0 0

0 IT 0

−LG,F1 −LG,F2 IT

 ηυ, R?
υ =


IT 0 0

0 IT 0

−LG,F1 −LG,F2 IT

Rυ, (C.75)

and

Lυ =


IT 0 0

0 IT 0

−LG,F1 −LG,F2 IT




0 0 −LF1,G

0 0 −LF2,G

0 0 0



=


0 0 −LF1,G

0 0 −LF2,G

0 0 LG

 , (C.76)
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with LG defined in equation (C.65). Using result (C.72), we can bound η̃υ as:

‖η?υ‖op√
T

≤

∥∥∥∥∥∥∥∥∥
IT 0 0

0 IT 0

−LG,F1 −LG,F2 IT

∥∥∥∥∥∥∥∥∥
op

‖ηυ‖op√
T

= Op

(
1√

min(NL, NH , T )

)
, (C.77)

which implies:

‖η?υ‖√
T

= Op

(
1√

min(NL, NH , T )

)
. (C.78)

Using analogous arguments, we can bound R̃υ(υ̂, υ̃) as:

‖R?
υ(υ̂, υ̃)‖√
T

= Op

(
1√

min(NL, NH , T )
+

(
‖υ̃‖√
T

)2

+

(
‖υ̂‖√
T

)2)
. (C.79)

[...]

Let us now compute matrix LG. We have:

LG =

[
w1

(
MF ∗ +

(
G′G

T

)−1
1

T
GG′

)
+ F ∗(F ∗′F ∗)−1e1G

′
]

×
[
d1MG +G(G′G)−1F ′1 +

(
F ′F

2T

)−1
d1

2T
F1F

′
1 +

(
G′G

T

)−1
d2

2T
F1F

′
2

]
+

[
w2

(
MF ∗ +

(
G′G

T

)−1
1

T
GG′

)
+ F ∗(F ∗′F ∗)−1e2G

′
]

×
[
d2MG +G(G′G)−1F ′2 +

(
F ′F

2T

)−1
d1

2T
F2F

′
1 +

(
F ′F

2T

)−1
d2

2T
F2F

′
2

]
= w1d1MF ∗MG + 2w1G(G′G)−1F ′1 + F ∗(F ∗′F ∗)−1e1F

′
1

+ w2d2MF ∗MG + 2w2G(G′G)−1F ′2 + F ∗(F ∗′F ∗)−1e2F
′
2

+ RL ,
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where the reminder term:

RL = −w1PF ∗G(G′G)−1F ′1

+w1

(
G′G

T

)−1(
F ′F

2T

)−1
1

T
GG′

[
1

2T
F1F

′
1d1 +

1

2T
F1F

′
2d2

]
+F ∗

(
F ∗′F ∗

T

)−1(
F ′F

2T

)−1(
G′F1

2T

)[
d1

(
e1F

′
1

2T

)
+ d2

(
e1F

′
2

2T

)]
−w2PF ∗G(G′G)−1F ′2

+w2

(
G′G

T

)−1(
F ′F

2T

)−1
1

T
GG′

[
1

2T
F2F

′
1d1 +

1

2T
F2F

′
2d2

]
+F ∗

(
F ∗′F ∗

T

)−1(
F ′F

2T

)−1(
G′F2

2T

)[
d1

(
e2F

′
1

2T

)
+ d2

(
e2F

′
2

2T

)]
,

where we use MF ∗Fj = 0 for j = 1, 2 and MGG = 0. The term RL (F,G) can be bounded as:

‖RL ‖ = Op(T
−1/2),

since ‖F ′jG/T‖ = Op(T
−1/2) for j = 1, 2. This allows to write:

LG = (w1d1 + w2d2)MF ∗MG

+2w1G(G′G)−1F ′1 + 2w2G(G′G)−1F ′2 + PF ∗ +Op(T
−1/2), (C.80)

where Op(T
−1/2) denotes a (T × T ) matrix whose norm is Op(T

−1/2).

[...]

Since ‖υ̃‖/
√
T ≤ c, w.p.a. 1, for some constant c > 0, the Op(T

−1/2) term in the RHS of equation

(C.80) can be absorbed into the residual term of equation (C.63). Moreover, by replacing F1 and F2

with their residuals in the projection onto G, we modify matrix LG by a term of order Op(T
−1/2).

Hence, we can analyze matrix LG as if (F1, F2) and G were orthogonal.

[...]
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C.1.7 Eigenvalues, eigenvectors and Jordan decomposition of matrix LG

i) Spectral decomposition of matrix LG

Let us now compute the eigenvalues and the associated eigenvectors of matrix LG defined by:

LG = PF ∗ + (w1d1 + w2d2)(MF ∗MG) + 2w1G(G′G)−1F ′1 + 2w2G(G′G)−1F ′2.

Since the vectors F1 and F2 are orthogonal (asymptotically) to vector G, the matrix MF ∗MG is the

orthogonal projection onto the orthogonal complement of the linear subspace generated by vectors F1,

F2 and G. Moreover the matrix

A = PF ∗ + 2w1G(G′G)−1F ′1 + 2w2G(G′G)−1F ′2

is (asymptotically) idempotent, with (T − 2)-dimensional null space equal to the orthogonal com-

plement of the span of vectors F1 and F2. Hence, matrix A admits the eigenvalue 1 with multi-

plicity 2, and the eigenvalue 0 with multiplicity T − 2. Moreover, matrix A maps the subspace

E1 = span{F1, F2, G} spanned by vectors F1, F2 and G into itself. Matrix A is an oblique projection

onto a bi-dimensional subspace of E1.

We deduce that matrix LG admits two invariant subspaces, namely E1 and its orthogonal comple-

ment E2, of dimensions 3 and T −3, respectively. On subspace E2, the linear operator corresponding to

matrix LG is diagonal and equal to w1d1 + w2d2. On subspace E1, the linear operators corresponding

to matrices LG and A are equal. We conclude that matrix LG admits the eigenvalue 0, associated to

the eigenvector G, the eigenvalue w1d1 + w2d2, with multiplicity T − 3, associated to the eigenspace

E2, and the eigenvalue 1 with multiplicity 2.

To conclude, let us derive the bi-dimensional eigenspace of matrix LG associated to eigenvalue 1.

Since this eigenspace is also the eigenspace of matrix A associated to eigenvalue 1, and matrix A is

idempotent, it is enough to find two linearly independent vectors in the image space of A . Two such

vectors are:

A F1 = F1 + 2(w1 + w2φ)G,

A F2 = F2 + 2(w1φ+ w2)G.
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ii) Jordan decomposition of matrix LG

The Jordan decomposition theorem 3 ensures the existence of a non-singular T × T matrix Q and a

upper-triangular matrix L̄G whose diagonal elements are the eigenvalues of LG, such that:

Q LG Q
−1 = L̄G, (C.81)

where

L̄G =

 LG,I 0

0 LG,II

 =



λ∗ 1
. . . . . .

λ∗ 1

λ∗

0

0
0 0 0

1 1

1


, (C.82)

where λ∗ = w1d1 + w2d2. The norms of the two matrices LG,I and LG,II are ‖LG,I‖op = w1d1 +

w2d2 < 1 and ‖LG,II‖op = 1.

iii) Another decomposition of matrix LG

We showed that LG admits two invariant subspaces, namely E1 and its orthogonal complement E2, of

dimensions 3 and T − 3, respectively. Let [v1, v2, v3] orthonormal basis for E1, and [w1, ..., wT−3] be

an orthonormal basis for E2. Therefore the matrix defined as:

Q = [w1, ..., wT−3, v1, v2, v3] (C.83)

is orthogonal, and unitary as:

Q′Q = QQ′ = IT → Q = Q−1. (C.84)

3See theorem 14 in Magnus and Neudecker (2007), p. 18.
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C.2 Proof of Proposition 4

[...]

C.3 Proof of Proposition 5

Let zt = [f ′1,t, f
′
2,t, g

′
t]
′ be the vector of stacked factors at time t, as defined in Section 4.2, and let

ẑt = [f̂ ′1,t, f̂
′
2,t, ĝ

′
t]
′. From Proposition 4 we have:

1

T

T∑
t=1

‖ẑt − Ĥ ′zt‖2 = Op

(
1

T

)
, (C.85)

‖Ĥ −H‖ = Op

(
1√
T

)
, H = I2KH+KL

. (C.86)

C.3.1 Consistency

We recall that the reduced-form factor dynamics is:

zt = C(θ)zt−1 + ζt,

where matrixC(θ) is the autoregressive matrix in Equation (13) written as a function of θ, and V (ζt) =

Σζ(θ). The parameter θ is subject to the constraint θ ∈ Θ, where Θ ⊂ Rp, is the compact set of

parameters values that satisfy matrix equation (5). Parameter θ is estimated by constrained Gaussian

Pseudo Maximum Likelihood (PML), and is the solution of the following minimization problem:

θ̂ = arg max
θ∈Θ

Q̂T (θ), (C.87)

w.r.t. θ ∈ Θ, where the criterion Q̂T (θ) is defined as:

Q̂T (θ) = −1

2
log |Σζ(θ)| −

1

2T

T∑
t=2

[ẑt − C(θ)ẑt−1]′Σζ(θ)
−1 [ẑt − C(θ)ẑt−1] . (C.88)
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Note that, if the factor values were observable, parameter θ would be estimated by constrained Gaus-

sian PML by minimizing the following criterion:

QT (θ) = −1

2
log |Σζ(θ)| −

1

2T

T∑
t=2

[zt − C(θ)zt−1]′Σζ(θ)
−1 [zt − C(θ)zt−1] . (C.89)

w.r.t. θ ∈ Θ. Let us rewrite the stacked factor estimate ẑt as:

ẑt = zt + (ẑt − Ĥ ′zt) + (Ĥ −H)′zt. (C.90)

Substituting equation (C.90) in the criterion (C.88), using the bounds (C.85) and (C.86) and the uni-

form boundedness of matrices C(θ) and Σζ(θ)
−1, we get the next Lemma, which is proved in the

supplementary material.

Lemma C.6.

Q̂T (θ) = QT (θ) + op(1), (C.91)

uniformly w.r.t. θ ∈ Θ.

From standard PML theory (see, for instance, Gourieroux and Monfort (1995)) we have:

sup
θ∈Θ
|QT (θ)−Q∞(θ)| = op(1), (C.92)

where the limit criterion

Q∞(θ) = −1

2
log |Σζ(θ)| −

1

2
E0

[
[z − C(θ)zt−1]′Σζ(θ)

−1 [zt − C(θ)zt−1]

]
, (C.93)

is minimized uniquely at the true value of parameter θ. Finally, equation (C.92) and Lemma C.6 allo

us to conclude that:

sup
θ∈Θ
|Q̂T (θ)−Q∞(θ)| = op(1). (C.94)

Then, by standard results on extremum estimators, we conclude that θ̂ = θ+op(1), i.e. θ̂ is a consistent

estimator.
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C.3.2 Rate of convergence

The first order conditions (F.O.C.) of the maximization problem (C.87) are:

∂

∂θ
Q̂T (θ̂T ) = 0. (C.95)

Applying the mean-value theorem to the F.O.C. in the last equation, we have:

√
T
∂

∂θ
Q̂T (θ0) +

∂2

∂θ∂θ′
Q̂T (θ̄)

√
T (θ̂T − θ0) = 0, (C.96)

where θ̄ is between θ0 and θ̂T componentwise, and θ0 denotes the true parameter value. By similar

arguments as in Lemma C.6 and equation (C.92) we have the following Lemma, which is proved in

the supplementary material:

Lemma C.7.

sup
θ∈Θ

∥∥∥∥ ∂2

∂θ∂θ′
Q̂T (θ)− ∂2

∂θ∂θ′
QT (θ)

∥∥∥∥ = op(1), (C.97)

sup
θ∈Θ

∥∥∥∥ ∂2

∂θ∂θ′
QT (θ)− ∂2

∂θ∂θ′
Q∞(θ)

∥∥∥∥ = op(1). (C.98)

Moreover since θ̂T is consistent, Lemma C.7 implies:

∂2

∂θ∂θ′
Q̂T (θ̄) =

∂2

∂θ∂θ′
Q∞(θ0) + op(1), (C.99)

where
∂2

∂θ∂θ′
Q∞(θ0) is nonsingular. Rearranging equation (C.96) we have:

√
T (θ̂T − θ0) =

(
− ∂2

∂θ∂θ′
Q∞(θ0) + op(1)

)−1√
T
∂

∂θ
Q̂T (θ0). (C.100)

The term
√
T
∂

∂θ
Q̂T (θ0) in the RHS of equation (C.100) can be rewritten as:

√
T
∂

∂θ
Q̂T (θ0) =

√
T
∂

∂θ
QT (θ0) +

√
T

(
∂

∂θ
Q̂T (θ0)− ∂

∂θ
QT (θ0)

)
. (C.101)

83



The first term in the RHS of equation (C.101) can be bounded as:

√
T
∂

∂θ
QT (θ0) = Op(1), (C.102)

applying a CLT for serial dependent data. Results (C.85) and (C.86) allow to bound the second term

in the RHS of equation (C.101) as in the next Lemma, which is proved in the supplementary material:

Lemma C.8.

√
T

∥∥∥∥ ∂∂θQ̂T (θ0)− ∂

∂θ
QT (θ0)

∥∥∥∥ = Op(1). (C.103)

The bounds in equations (C.103) and (C.102) allow to conclude that:

√
T‖θ̂T − θ0‖ = Op(1).

Q.E.D.
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APPENDIX D: Factor dynamics with yearly-quarterly

mixed frequencies

In this Appendix we consider the setting with yearly (LF) - quarterly (HF) data, one HF factor and one

LF factor (i.e., KH = KL = 1) as in the empirical section. The model of Section 2 is extended to

accommodate m = 4 HF subperiods. With scalar factors, the model parameters in the factor dynamics

are scalar, and denoted by lower-case letters.

D.1 Structural VAR representation

The dynamics of the stacked factor vector zt = [f1,t, f2,t, f3,t, f4,t, gt]
′ is given by the structural VAR(1)

model (Ghysels (2012)):



1 0 0 0 0

−rH 1 0 0 0

0 −rH 1 0 0

0 0 −rH 1 0

0 0 0 0 1





f1,t

f2,t

f3,t

f4,t

gt


=



0 0 0 rH a1

0 0 0 0 a2

0 0 0 0 a3

0 0 0 0 a4

m1 m2 m3 m4 rL





f1,t−1

f2,t−1

f3,t−1

f4,t−1

gt−1


+



v1,t

v2,t

v3,t

v4,t

wt


,

(D.1)

that is

Γzt = Rzt−1 + ηt, (D.2)

where ηt = (v1,t, v2,t, v3,t, v4,t, wt)
′ is a multivariate white noise process with mean 0 and variance-

covariance matrix:

Σ =



σ2
H 0 0 0 σHL,1

0 σ2
H 0 0 σHL,2

0 0 σ2
H 0 σHL,3

0 0 0 σ2
H σHL,4

σHL,1 σHL,2 σHL,3 σHL,4 σ2
L


. (D.3)
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D.2 Restrictions implied by the factor normalization

The factor normalization is:

V (zt) = V



f1,t

f2,t

f3,t

f4,t

gt


=



1 φ1 φ2 φ3 0

φ1 1 φ1 φ2 0

φ2 φ1 1 φ1 0

φ3 φ2 φ1 1 0

0 0 0 0 1


.

In particular, under stationarity we have:

φ1 = Cov(f1,t, f2,t) = Cov(f2,t, f3,t) = Cov(f3,t, f4,t),

since f1,t, f2,t, f3,t and f4,t are consecutive realizations of the HF factor process. Similarly:

φ2 = Cov(f1,t, f3,t) = Cov(f2,t, f4,t).

By computing the variance on both sides of equation (D.2) we get:

ΓV Γ′ = RV R′ + Σ. (D.4)

By matrix multiplication:

ΓV Γ′ =



1 φ1 − rH φ2 − rHφ1 φ3 − rHφ2 0

r2
H − 2rHφ1 + 1 r2

Hφ1 − rH(1 + φ2) + φ1 r2
Hφ2 − rH(φ1 + φ3) + φ2 0

r2
H − 2rHφ1 + 1 r2

Hφ1 − rH(1 + φ2) + φ1 0

r2
H − 2rHφ1 + 1 0

1


,
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and:

RV R′ =



r2
H + a2

1 a1a2 a1a3 a1a4 A∗15

a2
2 a2a3 a2a4 a2rL

a2
3 a3a4 a3rL

a2
4 a4rL

A∗55


,

where:

A∗15 = rH(φ3m1 + φ2m2 + φ1m3 +m4) + a1rL,

A∗55 = m2
1 +m2

2 +m2
3 +m2

4 + 2φ1(m1m2 +m2m3 +m3m4)

+2φ2(m1m3 +m2m4) + 2φ3m1m4 + r2
L.

Hence from (D.4) we get the following equations:

n. Position Equation
1 (1,1) 1 = r2

H + a2
1 + σ2

H

2 (2,2) r2
H − 2rHφ1 + 1 = a2

2 + σ2
H

3 (3,3) r2
H − 2rHφ1 + 1 = a2

3 + σ2
H

4 (4,4) r2
H − 2rHφ1 + 1 = a2

4 + σ2
H

5 (5,5) 1 = A∗55 + σ2
L

6 (1,2) −rH + φ1 = a1a2

7 (1,3) −rHφ1 + φ2 = a1a3

8 (1,4) −rHφ2 + φ3 = a1a4

9 (1,5) 0 = A∗15 + σHL,1
10 (2,3) φ1(r2

H + 1)− φ2rH − rH = a2a3

11 (2,4) φ2(r2
H + 1)− φ3rH − φ1rH = a2a4

12 (2,5) 0 = a2rL + σHL,2
13 (3,4) φ1(r2

H + 1)− φ2rH − rH = a3a4

14 (3,5) 0 = a3rL + σHL,3
15 (4,5) 0 = a4rL + σHL,4
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These equations imply:

(1) σ2
H = 1− r2H − a21,

(2) σ2
H = r2H − 2rHφ1 + 1− a22,

(3) σ2
H = r2H − 2rHφ1 + 1− a23,

(4) σ2
H = r2H − 2rHφ1 + 1− a24,

(5) σ2
L = 1−A∗55,

(6) φ1 = rH + a1a2,

(7) φ2 = r2H + rHa1a2 + a1a3,

(8) φ3 = r3H + r2Ha1a2 + rHa1a3 + a1a4,

(9) σHL,1 = −A∗15,

(10) φ1(r2H + 1)− φ2rH − rH = a2a3,

(11) φ2(r2H + 1)− φ3rH − φ1rH = a2a4,

(12) σHL,2 = −a2rL,

(13) φ1(r2H + 1)− φ2rH − rH = a3a4,

(14) σHL,3 = −a3rL,

(15) σHL,4 = −a4rL.

Let θ denote the vector containing rH , rL, ai and mi for all i = 1, 2, 3, 4. Equations (6), (7), (8)

express φ1, φ2, φ3 in terms of θ:

φ1 = rH + a1a2, (D.5)

φ2 = r2
H + rHa1a2 + a1a3, (D.6)

φ3 = r3
H + r2

Ha1a2 + rHa1a3 + a1a4. (D.7)

Equations (1), (5), (9), (12), (14) and (15) express the elements of the variance-covariance matrix Σ in
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terms of θ:

σ2
H = 1− r2

H − a2
1, (D.8)

σ2
L = 1− A∗55, (D.9)

σHL,1 = −A∗15, (D.10)

σHL,2 = −a2rL, (D.11)

σHL,3 = −a3rL, (D.12)

σHL,4 = −a4rL. (D.13)

Finally, the remaining equations (2), (3), (4), (10), (11) and (13) provide restrictions on the elements

of θ:

r2
H − 2rHφ1 + 1− a2

2 = 1− r2
H − a2

1, (D.14)

a2
2 = a2

3 = a2
4, (D.15)

φ1(r2
H + 1)− φ2rH − rH = a2a3, (D.16)

φ2(r2
H + 1)− φ3rH − φ1rH = a2a4, (D.17)

a2a3 = a3a4. (D.18)

By using (D.5), (D.6) and (D.7), the equations (D.14) - (D.18) can be written as:

a2
2 = a2

3 = a2
4, (D.19)

a2a3 = a3a4, (D.20)

a2
1 − 2rHa2a1 − a2

2 = 0, (D.21)

a1a2 − rHa1a3 − a2a3 = 0, (D.22)

a1a3 − rHa1a4 − a2a4 = 0. (D.23)
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The system of equations admits three sets of alternative solutions:

• a1 = a2 = a3 = a4 = 0, rH ∈ R,

• rH = 0, a1 = a2 = a3 = a4 ∈ R,

• rH = 0, a1 = −a2 = a3 = −a4 ∈ R.

We focus on the first set of solutions, and impose a1 = a2 = a3 = a4 = 0.

D.3 Reduced form representation

By inverting the matrix on the LHS of equation (D.1):

Γ−1 =



1 0 0 0 0

rH 1 0 0 0

r2
H rH 1 0 0

r3
H r2

H rH 1 0

0 0 0 0 1


,

the reduced form of the structural VAR(1) model in equation (D.1) is given by (see Ghysels (2012)):



f1,t

f2,t

f3,t

f4,t

gt


=



0 0 0 rH a1

0 0 0 r2
H rHa1 + a2

0 0 0 r3
H r2

Ha1 + rHa2 + a3

0 0 0 r4
H r3

Ha1 + r2
Ha2 + rHa3 + a4

m1 m2 m3 m4 rL





f1,t−1

f2,t−1

f3,t−1

f4,t−1

gt−1


+ ζt,

where the zero-mean innovation vector ζt = Γ−1ηt has the variance-covariance matrix

V (ζt) =



σ2
H rHσ

2
H r2Hσ

2
H r3Hσ

2
H σHL,1

(1 + r2H)σ2
H rH(1 + r2H)σ2

H r2H(1 + r2H)σ2
H rHσHL,1 + σHL,2

(1 + r2H + r4H)σ2
H rH(1 + r2H + r4H)σ2

H r2HσHL,1 + rHσHL,2 + σHL,3

(1 + r2H + r4H + r6H)σ2
H r3HσHL,1 + r2HσHL,2 + rHσHL,3 + σHL,4

σ2
L


.
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Let us now impose the restrictions from factor normalization derived in Section D.2. Using a1 = a2 =

a3 = a4 = 0, from equations (D.8)-(D.13), the parameters of the variance-covariance matrix of the

innovations are:

σ2
H = 1− r2

H , (D.24)

σ2
L = 1− [m2

1 +m2
2 +m2

3 +m2
4 + 2rH(m1m2 +m2m3 +m3m4)

+ 2r2
H(m1m3 +m2m4) + 2r3

Hm1m4 + r2
L ], (D.25)

σHL,1 = −rH(r3
Hm1 + r2

Hm2 + rHm3 +m4), (D.26)

σHL,2 = σHL,3 = σHL,4 = 0. (D.27)

D.4 Stationarity conditions

The stationarity condition for the VAR(1) model in equation (D.2) is: the eigenvalues of matrix

Γ−1R =



0 0 0 rH a1

0 0 0 r2
H rHa1 + a2

0 0 0 r3
H r2

Ha1 + rHa2 + a3

0 0 0 r4
H r3

Ha1 + r2
Ha2 + rHa3 + a4

m1 m2 m3 m4 rL


are smaller than one in modulus. If either ai = 0 for all i, or mi = 0 for all i, the stationarity condition

becomes: |rH | < 1 and |rL| < 1.
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