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ABSTRACT 

No Arbitrage Priors, Drifting Volatilities, and the Term Structure of 
Interest Rates* 

We propose a method to produce density forecasts of the term structure of 
government bond yields that accounts for (i) the possible mispecification of an 
underlying Gaussian Affine Term Structure Model (GATSM) and (ii) the time 
varying volatility of interest rates. For this, we derive a Bayesian prior from a 
GATSM and use it to estimate the coefficients of a BVAR for the term 
structure, specifying a common, multiplicative, time varying volatility for the 
VAR disturbances. Results based on U.S. data show that this method 
significantly improves the precision of point and density forecasts of the term 
structure. While this paper focuses on term structure modelling, the proposed 
method can be applied for a wide range of alternative models, including DSGE 
models, and is a generalization of the method of Del Negro and Schorfheide 
(2004) to VARs featuring drifting volatilities. The method also generalizes the 
model of Giannone et al. (2012), by specifying hierarchically not only the prior 
variance but also the prior mean of the VAR coefficients. Our results show that 
both time variation in volatilities, and a hierarchical specification for the prior 
means, improve model fit and forecasting performance.  
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1 Introduction

Producing accurate forecasts of the term structure of interest rates is crucial for bond port-

folio management, derivatives pricing, and risk management. In the recent literature several

papers have analyzed the forecasting performance of di¤erent methods, e.g. Du¤ee (2002),

Ang and Piazzesi (2003), Diebold and Li (2006), Almeida and Vicente (2008), Christensen,

Diebold and Rudebusch (2011), Carriero (2011), and Carriero, Kapetanios and Marcellino

(2012). All these contributions have focused on point forecasts of the yield curve, but as-

sessing the whole predictive distribution of the yield curve is more important for the success

of portfolio and risk management strategies. Hong, Li and Zhao (2004) make a relevant

contribution in this context, �nding that modelling changes in the variance is important for

interest rate density forecasting. Shin and Zhong (2013) �nd a similar result using realized

volatility.

In this paper we focus on forecasting the whole density distribution of future term struc-

tures. As the time series of interest rates typically feature comovement and heteroskedas-

ticity, having a joint dynamic model featuring time variation in volatility is key in order

to produce reliable density forecasts. Therefore, we propose the use of a Bayesian Vector

Autoregressive model whose disturbances follow a stochastic volatility process driven by a

single multiplicative factor. Such a model has the advantage that, conditional on the latent

volatility factor, it admits a Normal-Inverse Wishart naturally conjugate prior. In addition,

we use a particular prior for the model parameters, based on a no arbitrage model.

Joslin, Singleton, and Zhu (2011) have provided a representation of Gaussian A¢ ne Term

Structure Models (GATSM) which makes clear that, in the absence of additional restrictions

on risk premia, no-arbitrage restrictions per se do not a¤ect the dynamics of the factors

governing the yield curve, and therefore do not a¤ect the forecasts of such factors. However,

they also show that no-arbitrage restrictions do a¤ect the estimation of the loadings (and

therefore a¤ect the mapping from the factor forecasts to the yields forecasts), as well as the

variances of the errors in both the measurement and transition equations of the model (and

therefore the density forecasts), and conclude that �the role of no-arbitrage restrictions is

an empirical issue."1

1Du¤ee (2011) argues that since the loadings of the model can be estimated with extremely high preci-

sion even if no-arbitrage restrictions are not imposed, the Gaussian no-arbitrage model, absent additional

restrictions on risk premia, o¤ers no advantages over a simple regression-based approach. This argument

does not apply if one considers comparing forecasts from a GATSM against forecasts from an unrestricted

Vector Autoregression (VAR), as is the case in this paper. Indeed, beyond the no arbitrage restrictions, the

factor structure inherent in a GATSM restricts the data more than an unrestricted VAR and therefore can

provide gains in forecast accuracy. Finally, note that while we do not pursue this route in this paper, our
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Several papers have analyzed this issue, with mixed results. Du¤ee (2002) and Ang and

Piazzesi (2003) have shown that beating a random walk with a traditional no arbitrage

GATSM is di¢ cult. Evidence in favour of using no arbitrage restrictions is provided by

Almeida and Vicente (2008), Christensen, Diebold and Rudebusch (2011), and Carriero

and Giacomini (2011). Interestingly, in the case of Almeida and Vicente (2008), one of the

reasons for the di¤erence in results with respect to the rest of the literature is that they

consider models with stochastic volatility, while most of the literature only adopts Gaussian

models in forecasting applications.

One of the reasons behind the mixed results concerning the usefulness of no arbitrage

restrictions might be related to the fact that the assumption of absence of arbitrage - which

is per se reasonable in well developed markets - needs nonetheless to be translated into a

set of restrictions to impose on a particular model. This process requires a set of additional

speci�cation assumptions, which are not necessarily holding in the data. For this reason, we

propose using a no arbitrage model as a prior rather than as a set of sharp restrictions on

the model parameters, which allows us to take into account the potential misspeci�cation

of the model. The use of a no-arbitrage model as a prior will result in shrinkage of the

posterior distributions of the parameters of a Vector Autoregression � and consequently of

its density forecasts � in an economically-meaningful direction, which might (and in our

application does) improve the forecasting performance with respect to both a fully restricted

no-arbitrage model, and a fully unrestricted VAR.2

Carriero (2011) conducts a similar exercise, but only under the hypotheses of Gaussian-

ity and conditional homoskedasticity of the yields, mild assumptions for point forecasting

but likely inadequate for density forecasting. In particular, using the methodology put for-

ward by Del Negro and Schorfheide (2004), Carriero (2011) develops a model for the term

structure in which the no arbitrage restrictions are imposed as prior information rather than

dogmatically, and shows that once the misspeci�cation of the model is properly taken into

account the point forecasting performance can improve substantially.

In this paper we extend this methodology to the case of a VAR featuring stochastic

framework lends itself naturally to imposing additional restrictions on the dynamics of risk premia, which

in turn would impact the dynamics of the factors. As shown by Du¤ee (2011) such restrictions can further

improve the forecast accuracy of a GATSM.
2Our approach is in spirit similar to the relative entropy procedures of Robertson, Tallman, and Whiteman

(2005), and Giacomini and Ragusa (2011). In the entropy approach, the forecasts are �tilted" towards an

economic model of reference after estimation of a baseline (atheoretical) model has taken place, and the

parameters of the economic model of reference need to be estimated separately. In our approach all model

coe¢ cients and latent variables � both of the VAR and of the economic model used as a prior � are

estimated jointly, and their posterior distributions are shrunk in the economically meaningful direction.
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volatility. As the volatilities of a panel of yields move closely together, we impose on them

a factor structure where the volatility of each yield is ultimately related to a common

stochastic volatility factor, as in Carriero, Clark and Marcellino (2012). This approach

shrinks the point and density forecasts towards values consistent with both the validity of

the GATSM, and time variation in the volatilities.

As we shall see, such a modelling choice results in a clear improvement in density fore-

casting performance. In particular, the proposed model produces better density forecasts

than a model in which the estimates are shrunk towards a GATSM but the time variation

in volatility is shut down. It also produces better point and density forecasts than the case

in which the GATSM is imposed exactly on the data, and than a random walk, which is

regarded as a very competitive benchmark in yield curve forecasting.3 Further analysis re-

veals that the most relevant feature of the GATSM prior to improve forecast accuracy is the

imposition of a factor structure on the yields, while the additional no-arbitrage restrictions

imposed on the loadings provide only marginal improvements -if any- in forecasting, a result

broadly in line with Du¤ee (2011a).

Moreover, while Carriero�s (2011) prior speci�cation is based on the model by Ang

and Piazzesi (2003), which is the discrete time version of the speci�cation proposed by

Du¢ e and Kan (1996), here we consider the new canonical form of no arbitrage models

introduced by Joslin, Singleton, and Zhu (2011). This new canonical representation presents

very important advantages in the computation of the likelihood, because it allows one to

disentangle the role played by the structural parameters in the risk neutral and physical

measure, which in turn allows one to factorize the likelihood and concentrate out some

parameters, reducing dramatically the di¢ culties typically arising in the search for the global

optimum of the likelihood. In our exercise, the factorization will allow us to concentrate out

some of the parameters of the model, reducing dramatically the number of coe¢ cients to

estimate and yielding better mixing properties and faster computation time at a relatively

small cost.

It is worth stressing that while in this paper we consider term structure forecasting,

this is only one of the possible applications of our proposed method. It can be applied

for a wide range of alternative models, including DSGE models, and can be considered

as an extension of the method of Del Negro and Schorfheide (2004) to VARs featuring

drifting volatilities. Our proposed model also nests the one of Giannone, Lenza and Primiceri

3To assess the relative merits of the no arbitrage restriction, we also include in the comparison a BVAR

with stochastic volatility where the prior means are shrunk towards a random walk, resembling a version of

the Minnesota prior. We �nd that such a model is also systematically outperformed by our proposed model

in both density and point forecasting.
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(2012), as in their approach the model is homoskedastic and only the prior variance of the

VAR coe¢ cients is speci�ed in a hierarchical fashion, while in our approach the model is

heteroskedastic, and both the prior variance and the prior mean of the VAR coe¢ cients

are speci�ed hierarchically. Our results show that a hierarchical speci�cation for the prior

means does help in forecasting, highlighting the fact that not only shrinkage per se, but also

the direction towards which shrinkage takes place, can be helpful.

The paper is organized as follows. Section 2 describes the no arbitrage model used in

the paper. Section 3 discusses the priors, derives the conditional posteriors (with additional

details in the Appendix), and brie�y describes the other BVAR models to which we compare

the results from our proposed speci�cation. Section 4 discusses the MCMC implementation.

Section 5 presents our U.S.-based evidence, including both a full-sample evaluation and an

out-of sample forecasting assessment. Section 6 summarizes the main results and concludes.

Finally, an Appendix provides additional details.

2 The JSZ Canonical A¢ ne Term Structure Model

Since the seminal work of Vasicek (1977) a large part of research has focused on Gaussian

A¢ ne Term Structure Models (GATSM). Prominent contributions in this tradition include

Du¢ e and Kan (1996), Dai and Singleton (2000), Du¤ee (2002), and Ang and Piazzesi

(2003). Traditional GATSM entail a high level of nonlinearity that makes the estimation

extremely di¢ cult and often unreliable. For example Du¤ee (2009) and Du¤ee and Stan-

ton (2012) show that there are considerable problems in reaching the global optimum, and

Hamilton and Wu (2012) show that even some commonly used models are not identi�ed.

Some recent literature has successfully addressed this issue. Hamilton and Wu (2012) pro-

pose a strategy to estimate such models using a series of transformations and OLS estima-

tion. Christensen, Diebold and Rudebusch (2011) proposed a term structure model based

on the Nelson and Siegel (1987) exponential framework, featuring the important extension

that no arbitrage is imposed on the cross section of yields.

Joslin, Singleton and Zhu (2011) (JSZ) recently proposed a representation of GATSM

equivalent to the canonical representation of Du¢ e and Kan (1996), but parametrized in such

a way that estimation is considerably simpli�ed. Under such representation, a convenient

factorization of the likelihood arises, which allows fast convergence of standard ML to the

global optimum, whereas estimation of models represented as in Du¢ e and Kan (1996) is

typically problematic. The computational advantage of the JSZ approach stems from the

fact that the particular rotation of the model they use makes evident the fact that the
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dynamics of the factors driving the cross section of yields is completely independent from

the assumption of absence of arbitrage.4

The method proposed by JSZ is particularly well suited for our purposes, because the

estimation of the JSZ structural parameters will be a step in a large Markov Chain Monte

Carlo (MCMC) algorithm, and the factorization they provide will allow us to concentrate out

some of the parameters of the model, thereby reducing the number of coe¢ cients to estimate,

yielding better mixing properties and faster estimation. In what follows we summarize the

representation proposed by JSZ; the interested reader can �nd additional details on the

derivation in Appendix A or in JSZ.

Term structure models assume that the evolution of yields over time is driven by some

factors, which can be either observable or latent. Then, given the factor dynamics, the

assumption of no arbitrage implies a set of restrictions on the movements of the yields in

the cross section. In the canonical Du¢ e and Kan (1996) representation, the evolution of

the n factors (a n-dimensional state vector St) is given by:

�St = K
P
0S +K

P
1SSt�1 +�S"

P
t (1)

�St = K
Q
0S +K

Q
1SSt�1 +�S"

Q
t (2)

rt = �0S + �1SSt (3)

where Q and P denote the risk neutral and physical measures of probability, rt is the short
term rate, �S is the Cholesky factor of the conditional variance of the states, and the errors

are i.i.d. Gaussian random variables with mean 0 and variance 1.

Under the Q probability measure, prices are a martingale, which resembles an hypo-

thetical situation in which investors are risk neutral. Under the P measure agents� risk
aversion implies that prices need to be predictable to some extent, producing the expected

returns necessary to compensate investors for bearing risks. Absence of arbitrage and the

existence of the equivalent martingale measure Q are equivalent conditions (Harrison and

Kreps, 1979). Conversion from the P to the Q measure can be achieved using a variable

transformation described by a Radon-Nikodym derivative that, together with the risk free

rate, forms the pricing kernel. Absence of arbitrage and the existence of the pricing kernel

are also equivalent conditions.5

4As JSZ stress, because their representation and Du¢ e and Kan�s (1996) representation are equivalent,

they both have this feature. However, in the latter representation this is less evident because it is hidden by

the rotation used.
5 In particular, under the Q measure the price of an asset Vt that does not pay any dividends at time

t + 1 satis�es Vt = EQ
t [exp(�rt)Vt+1], where rt is the short term rate. Under the P measure the price is

Vt = E
P
t [(�t+1=�t) exp(�rt)Vt+1], where �t+1 is the Radon-Nikodym derivative.
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It is important to distinguish the assumption of absence of arbitrage and the additional

speci�cation restrictions inherent in a GATSM. In particular, any further assumption be-

yond the existence of the equivalent martingale measure (or equivalently the existence of

a pricing kernel) goes beyond the assumption of no-arbitrage per se. Of course, practical

implementation of GATSM requires to specify a distribution for the pricing kernel and a

law of motion of the factors, but these are additional assumptions going beyond the mere

absence of arbitrage, and as such they can introduce misspeci�cation. For example, the use

of a VAR(1) for the law of motion of the factors under the P measure is an assumption
completely unrelated to the absence of arbitrage, and it can introduce misspeci�cation in

the model.6 With regards to the pricing kernel, most papers in this tradition assume a

log-normal distribution, an assumption that provides tractability but can induce misspeci-

�cation.

Of course, one way to solve this problem is to search for a model better explaining the

yields dynamics and their cross sectional variation. However, the joint hypothesis problem

can not be avoided, and the search for a better speci�cation poses serious problems, as the

use of more complex speci�cations may actually worsen the misspeci�cation of the model.

In this paper, we propose an alternative route, which starts from the acknowledgement

that any term structure model will su¤er some degree of misspeci�cation. Instead, a Vector

Autoregression (VAR) � provided its dynamics is su¢ ciently rich � is more likely to

o¤er an accurate representation of the data. Therefore we propose to model yields using a

VAR, while at the same time shrinking the VAR parameters in the direction of parameters

implied by a GATSM. Importantly, in order to avoid misspeci�cation, we do not impose

these restrictions sharply, but we allow for some noise around them. This amounts to using

the moments implied by the validity of the GATSM on the yields as prior information on

the VAR coe¢ cients.

Returning to the speci�cation of the GATSM on which the VAR coe¢ cient prior will be

based, the model-implied yields on a set of zero-coupon bonds of maturity � = 1; :::; N are

6For example, Du¤ee (2011b) shows that it is entirely possible for the factors to follow richer dynamics

in the physical measure than in the risk neutral measure, and that this translates to the presence of hid-

den factors which -while not useful in explaining the cross-section of yields- can help in explaining their

dynamics. Similarly, Joslin, Priebsch, and Singleton (2012) show that a VAR representation (under the

physical measure) including measures of real economic activity and in�ation captures better the dynamics

of the term structure. In this paper we illustrate the proposed approach using the simpler framework o¤ered

by yields-only models, but our approach can be naturally extended to models allowing for macroeconomic

factors.
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an a¢ ne function of the state St:

~yt = A(�
Q
S ) +B(�

Q
S )St; (4)

where y�t is a N � 1 vector of yields, A(�QS ) and B(�
Q
S ) are N � 1 and N � n coe¢ cient

matrices which are functions of the deep parameters �QS = fK
Q
0S ;K

Q
1S ;�S ; �0S ; �1Sg through

a set of Riccati equations. Here the use of the symbol ~ highlights that the yields are assumed

to be perfectly priced by the model, i.e. they contain no measurement error. To allow for

measurement error, de�ne yt as a N � 1 vector of observable yields:

yt = A(�
Q
S ) +B(�

Q
S )St +�y"

y
t ; (5)

where "yt is a vector of i:i:d: N(0; 1) measurement errors, and �y is a lower triangular

matrix. For estimation, equations (1) and (5) form a Gaussian state space model, for which

the likelihood is readily available via the Kalman �lter.

JSZ derive the following equivalent representation for equations (1) and (5):

�Pt = K
P
0P +K

P
1PPt�1 +�P "

P
t (6)

yt = Ap(�
Q
P ) +Bp(�

Q
P )Pt +�y"

y
t : (7)

In (6) and (7), Pt =W ~yt are n linear combinations of the N perfectly priced yields (therefore

they are portfolios of yields), and �P is the Cholesky factor of their conditional variance.

All the coe¢ cients appearing in Ap, Bp are ultimately a function of the deep coe¢ cients

of the model �QP = fkQ1; �Q;�P g, where �Q are the (ordered) eigenvalues of K
Q
1S and k

Q
1

is a scalar related to the long run mean of the short rate under the risk neutral measure.

Moreover, note that the parameters in KP
0P and K

P
1P enter only in the transition equation.

Details of the transformation leading to the system (6) and (7) can be found in Appendix

A or in JSZ.

The computational bene�ts from using the JSZ normalization arise from the observation

that the least-squares projection of the observable factors P ot =Wyt onto their lagged values

will nearly recover the ML estimates of KP
0P and K

P
1P to the extent that P

o
t � Pt (and the

best approximation is given by choosing W using principal components). As we will use the

model as a reference point towards which estimates of a Vector Autoregression (VAR) are

shrunk, concentrating out KP
0P and K

P
1P by estimating them via OLS in a preliminary step

is harmless.7 Therefore, in a model with 3 factors, there are in total 3+1+6+N = 10+N

7Strictly speaking this concentration is exact only if one assumes that the yields are measured without

errors. However, as noted by JSZ, the choice of principal components weights ensures that P ot � Pt, and this
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parameters to be estimated: the 3 eigenvalues in �Q, kQ1, the 6 elements of �P , and the N

elements on the diagonal of �y.8 We collect these in the vector:

� = (�Q; kQ1;�P ;�y): (8)

As an additional advantage, the OLS estimates of the error variances �̂P and �̂y based on

the observed yields yt and portfolios P ot provide a natural initial guess for �P and �y.

For future reference it is convenient to compute the moments of the yields under the

state space model in (6)-(7), for a given �. The moments of yt implied by the state space

system are derived in Appendix B. They are:

E[yty
0
t] = (Ap +Bp

�P )(Ap +Bp �P )
0 +Bp�fB

0
p +�y�

0
y; (9)

and:

E[yty
0
t�h] = (Ap +Bp �P )(Ap +Bp �P )

0 +Bp(K
P
1P + I)

h�fB
0
p; (10)

where �P = E[Pt] = �KP
1P
�1KP

0P and �f = E[ftf
0
t] solves the Lyapunov equation �f =

(KP
1P + I)�f (K

P
1P + I)

0 +�P�
0
P .

In our methodology, the moments (9) and (10) will be used to form a prior for a Vector

Autoregression. It is important to stress that our prior is given by the whole GATSM, and

not only by the set of no-arbitrage restrictions. The GATSM imposes: i) a factor structure

for the yields, ii) a particular dynamic structure for the factors under the P measure (a
VAR(1) homoskedastic process), and iii) a set of restrictions on the observation equation of

the system. Therefore in our setup the imposition of the GATSM as a prior can produce

gains in forecast accuracy, even though, as noted by Joslin, Singleton, and Zhu (2011), the

no-arbitrage restrictions per se do not a¤ect the dynamics of the factors governing the yield

curve, and even though, as argued by Du¤ee (2011a), imposing restrictions on the obser-

vation equation do not provide relevant gains in e¢ ciency. Indeed a Vector Autoregression

is a more general representation of the data than a GATSM, and therefore the imposition

of the GATSM as a prior rather than as a set of sharp parameter restrictions can provide

gains in forecast accuracy. Imposing restrictions may create enough model misspeci�ca-

tion to overwhelm any gains from parsimony and harm forecast accuracy. Instead using

Bayesian shrinkage to push the model toward the restrictions but not impose them on the

in turn ensures that the concentration is nearly exact. Indeed, Figure 1 in JSZ shows that the model-implied

�ltered Pt are nearly identical to their observable counterpart P ot . As we use this model as a prior, the

cost of such (slightly) inexact concentration is largely o¤set by the bene�t of achieving much better mixing

properties of the algorithm.
8 If one were not concentrating out the parameters in KP

0P and K
P
1P this would imply having to estimate

12 more parameters.
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data may be less likely to create enough misspeci�cation to overwhelm gains from shrinkage

(equivalently, parsimony).

Finally, it is worth stressing that the prior derived from (9) and (10) will of course

be Gaussian and homoskedastic. Such a prior will be imposed on a Vector Autoregression

featuring stochastic volatility, thereby shrinking the posterior distributions of the coe¢ cients

towards a homoskedastic no-arbitrage model. While the shrinkage of the point estimates

towards the values implied by the GATSM is obviously desirable, the shrinkage towards a

homoskedastic representation can be thought as somewhat less appealing. However, one

needs to bear in mind that the posterior of the VAR will allow for stochastic volatility, and

therefore in practice estimates can (and do) produce drifting volatilities. Alternatively, one

could think of using a prior which is already based on a model featuring drifting volatilities,

so that there would not be shrinkage towards a homoskedastic representation. To that end,

there are broad classes of no arbitrage models with stochastic volatility available, which

could be potentially used as a prior. However, because of the absence of Gaussianity, the

moments (9) and (10) would no longer be su¢ cient statistics, and none of these models could

produce a manageable conjugate prior for a VAR. The implementation of a heteroskedastic

prior would be possible in principle, but it is in practice unmanageable.9

3 Vector Autoregression with no arbitrage prior and common

stochastic volatility

The second ingredient of our methodology is the speci�cation of a VAR with drifting volatil-

ities for the N yields on government bonds. We use the speci�cation proposed by Carriero,

Clark and Marcellino (2012), which they apply to VARs for macroeconomic variables:

yt = �0 +�1yt�1 + :::+�pyt�p + ut: (11)

ut = �0:5t �t; �t � N(0; V ); (12)

log(�t) = �0 + �1 log(�t�1) + �t; �t � iid N(0; �2): (13)

In our context, yt is a vector of yields of di¤erent maturities, and there is a single

volatility process �t that is common to all yields, and drives the time variation in the entire

variance-covariance matrix of the VAR errors. In order to achieve identi�cation, we set the

initial condition of the CSV process to �1 = 1. We group the parameters governing the

dynamics of �t in the vector � = (�0; �1; �2): The scaling matrix V allows the variances of

9 In particular, the implementation of such a prior would require repeated simulation of arti�cial data sets

from the no arbitrage model used as prior.
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each variable to di¤er by a factor that is constant over time. The variance of ut is de�ned

as �t = �tV:

The assumption of common stochastic volatility is predicated on the fact that the volatil-

ities of yields feature a strong factor structure, with the �rst principal component explaining

most of the variation in the panel. For example, in the data set we use in our empirical

application (seven zero-coupon unsmoothed yields) there is a strong commonality, with the

�rst principal component explaining 89% of the individual volatilities of the yields.10 Mod-

elling volatility as driven by a single multiplicative factor produces a likelihood featuring a

variance matrix with Kronecker structure, which in turns ensures the existence of a naturally

conjugate N-IW prior (conditional on the history of volatilities).

To derive the likelihood of the VAR, consider the equations for all observations t =

1; :::; T . By stacking them by columns and then transposing the system we get:

Y = X�+ U; (14)

where Y is a T � N data-matrix with rows y0t, X is a T � k data-matrix with rows

x0t = (1; y0t�1; y
0
t�2; :::; y

0
t�p) and U is a T � N data-matrix with rows u0t. Now consider

the likelihood of the VAR conditional on knowledge of the history of volatilities. De�ne a

diagonal matrix having the whole history of �t in the main diagonal:

� = diag(�1; :::; �T ): (15)

In Appendix C we show that the likelihood is given by:

P (Y j�; V;�) _ jV j�0:5k expf�0:5tr[V �1(�� �̂)(X 0��1X)(�� �̂)]g

� jV j�0:5(T�k) expf�0:5tr[V �1Ŝ]g; (16)

where �̂ = (X 0��1X)�1X 0��1Y and Ŝ = (Y �X�̂)0��1(Y �X�̂). Equation (16) shows that
this distribution � conditional on the knowledge of � � can be decomposed in an inverse

Wishart marginal distribution for V (second line) and a conditional (on V ) matricvariate

normal distribution for � (�rst line). A distinguishing feature of the matricvariate normal

distribution is the Kronecker structure of its covariance matrix.

For such form of likelihood function a naturally conjugate N-IW prior is available. For

example, one could use the N-IW Minnesota-type prior proposed by Kadiyala and Karlsson

(1997). Here we derive the prior as in Del Negro and Schorfheide (2004), i.e. by using the

10The estimates of the individual volatilities to which we refer here are based on univariate autoregressive

models with stochastic volatility.
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moments of the underlying state space system. Details of the derivation can be found in

Appendix C. The resulting prior distribution is:

�jV; �; 
 � N(�̂�(�); V 
 (
T�X�0X�(�))�1); (17)

V j�; 
 � IW (Ŝ�(�); 
T � k); (18)

where:

�̂�(�) = ��1X�0X�(�)�X�0X�(�); (19)

Ŝ�(�) = 
T (�Y �0Y �(�)� �Y �0X�(�)��1X�0X�(�)�X�0Y �(�)): (20)

The matrices �Y �0Y �(�);�Y �0X�(�);�X�0X�(�) contain the moments of the yields under the

GATSM model and can be easily computed from the state space representation for any

given � using the expressions of E[yty0t] and E[yty
0
t�h] given by equations (9) and (10).

Note that the prior in (17)-(18) is conditional on � as the computation of the moment

matrices requires knowledge of these parameters. The prior is also conditional on the pa-

rameter 
 which measures the overall tightness of the prior. Del Negro and Schorfheide

(2004) show how this prior can be interpreted as a set of T � = 
T arti�cial observations

obeying the state space (6)-(7), and therefore the tightness parameter 
 can be interpreted

as the fraction of arti�cial to actual observations in the sample. In the Bayesian termi-

nology, the prior in (17)-(18) is said to be hierarchical, i.e. dependent on a second layer of

parameters (hyperparameters) � � and 
 � for which priors will be speci�ed and posteriors

distributions obtained.

The joint posterior distribution of � and V , conditional on �, 
,and �, will be propor-

tional to the likelihood times the prior, and by adding the appropriate integrating constant

will be of the N-IW form (Zellner, 1973):

�jY;�; V; �; 
 � N(~�(�); V 
 (
T�X�0X�(�) +X 0��1X)�1); (21)

V jY;�; �; 
 � IW ( ~S(�); (
 + 1)T � k); (22)

where :

~�(�) = (
T�X�0X�(�) +X 0��1X)�1(
T�X�0Y �(�) +X
0��1Y ); (23)

~S(�) = [(
T�Y �0Y �(�) + Y
0��1Y )� (
T�Y �0X�(�) + Y 0��1X)(
T�X�0X�(�)

+X 0��1X)�1(
T�X�0Y �(�) +X
0��1Y )]: (24)

When 
 ! 0 the posterior mean of � approaches the OLS estimate. On the other hand,

when 
 ! 1, the posterior mean of � approaches the prior mean ��(�), i.e. the value

consistent with the sharp GATSM restrictions.
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The joint p.d.f. of the posterior distribution of the VAR parameters and the hyperpara-

meters, conditional on the history of volatilities �, can be factorized as follows:

p(�; V; �; 
jY;�) _ p(�jY;�; V; �; 
)p(V jY;�; �; 
)p(�; 
jY;�): (25)

Draws from the distribution of �; V; �; 
jY;� can be obtained by drawing sequentially

from �; 
jY;�, V jY;�; �; 
, and �jY;�; V; �; 
. Draws from �; 
jY;� can be obtained us-

ing Metropolis steps using the kernel of the p.d.f. of this distribution, which is available

and provided in Appendix D, equation (101). Draws from V jY;�; �; 
, and �jY;�; V; �; 

are instead obtained via MC steps using (21) and (22). Finally, we note that in (25) we

have omitted conditioning on �, i.e. the parameters of the law of motion for the volatility,

because they are redundant under knowledge of �.

Drawing from the distribution of �; V; �; 
jY;� allows one to use equations (11) and (12)
to produce the predictive density of yt conditional on the volatility at time t. To complete

the model, one needs to simulate the volatility process described by (13); therefore we now

turn to the joint posterior of the volatility process�t and its law of motion parameters �,

conditional on the VAR coe¢ cients:

p(�; �jY;�; V ): (26)

Note we have omitted to condition also on the hyperparameters because under knowledge

of � and V they do not yield any additional information. Draws from �; �jY;�; V can be

obtained by drawing in turn from �jY;� and �jY;�; V; �. Following Cogley and Sargent
(2005) we specify conjugate priors on the parameters in �, so that the conditional posterior

distribution of � is known and draws from it can be obtained via a MC step.

To draw from the conditional posterior of �, we use the method proposed in Carriero,

Clark, and Marcellino (2012). Such method is a modi�cation of Cogley and Sargent (2005)

to allow for a single stochastic volatility factor. De�ning the orthogonalized residuals wt =

(w1t; :::; wnt) = V
�1=2ut the kernel of p(�jY;�; V; �) is given by:

p(�jY;�; V; �; 
; �) =
TY
t=1

p(�tj�t�1; �t+1; �; wt) (27)

By choosing an appropriate proposal density, this kernel can be used as a basis for a Metropo-

lis step with acceptance probability:

a = min

0@���n�0:5t

Yn

i=1
exp(�0:5w2it=��t )

��n�0:5t

Yn

i=1
exp(�0:5w2it=�t)

; 1

1A : (28)
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Note this di¤ers from Cogley and Sargent (2005), as in their case each volatility process

�it; i = 1; :::n; is drawn separately conditional on the remaining n�1 � terms, which means
that n� 1 elements in the products �ni=1 exp(�0:5w2it=��t ) and �ni=1 exp(�0:5w2it=�t) would
cancel out. Details on the derivation are provided in Appendix C.

An algorithm drawing in turn from (25) and (26) will recover the joint posterior of the

VAR coe¢ cients, the hyperparameters, and the volatility. For future reference we label this

model JSZ�V AR�CSV (VAR with Joslin, Singleton, Zhu prior and Common Stochastic
Volatility).

3.1 Homoskedastic version

In our forecasting exercise we will also consider a homoskedastic version of the model, which

we label JSZ�V AR (VAR with Joslin, Singleton, Zhu prior). This model is simply obtained
by setting �t = 1 for all t, and is given by:

yt = �0 +�1yt�1 + :::+�pyt�p + �t; �t � N(0; V ); (29)

Note that the model above is similar to that of the JSZ � V AR � CSV in equations

(11)-(13), the only di¤erence being that the volatility is assumed to be constant over time,

therefore the parameters � and the volatility �t drop out of the analysis and the relevant

joint posterior distribution of interest is (25). Also, as under this speci�cation � = IT , we

have that the conditional posteriors of the VAR parameters become:

�jY;�; V; �; 
 � N(~�(�); V 
 (
T�X�0X�(�) +X 0X)�1); (30)

V jY;�; �; 
 � IW ( ~S(�); (
 + 1)T � k); (31)

where:

~�(�) = (
T�X�0X�(�) +X 0X)�1(
T�X�0X�(�) +X 0Y ); (32)

~S(�) = [(
T�Y �0Y �(�) + Y
0Y )� (
T�Y �0X�(�) + Y 0X)(
T�X�0X�(�)

+X 0X)�1(
T�X�0Y �(�) +X
0Y )]: (33)

This model is of course nested in the more general JSZ � V AR � CSV model, and is

conceptually identical to the model estimated by Carriero (2011). However, note that dif-

ferently from Carriero (2011), this model is based on the JSZ representation of the GATSM,

which makes estimation much easier and the mixing of the MCMC sampler much better.
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4 MCMC estimation

We have now developed all the blocks we need to estimate the VAR with common stochastic

volatility and no arbitrage prior (JSZ � V AR � CSV ). The parameters to be estimated
are: (i) the deep coe¢ cients of the model �; (ii) the GATSM prior tightness 
; (iii) the

VAR variances V ; (iv) the VAR coe¢ cients �; (v) the time series of the stochastic volatility

factor �; and (vi) the coe¢ cients of the volatility process �. The joint and marginal pos-

terior distributions of these coe¢ cients can be obtained by a MCMC sampling scheme. In

particular the algorithm will work as follows:

1. Draw from the conditional posterior distribution of 
; p(
jY; �;�);

2. Draw from the conditional posterior distribution of �; p(�jY; 
;�);

3. Draw from the conditional posterior distribution of V; p(V jY; �; 
;�);

4. Draw from the conditional posterior distribution of �; p(�jY; V; �; 
;�);

5. Draw from the conditional posterior distribution of �; p(�jY;�; V; �); and

6. Draw from the conditional posterior distribution of �; p(�jY;�):

Note that steps 1-4 allow us to retrieve draws from �; V; �; 
jY;�; �, while steps 5-6
provide draws from �; �jY;�; V; �; 
, and therefore cycling through these two groups of steps
resembles a Gibbs sampler and provides draws from the joint posterior of �; V; �; 
;�; �jY .

The priors on the VAR coe¢ cients V and � are set up hierarchically, using equations

(17) and (18). We do not need a prior on the �rst observation of the volatility process as

in Cogley and Sargent (2005), because in our setup this value is constrained to 1 to achieve

identi�cation of the variance matrix of the disturbances �t = �tV . Therefore, we only need

to specify priors for 
; �; �. We use a weakly informative prior for �, implementing the

belief that the �rst factor in the GATSM is a random walk, the second is stationary but

very persistent, and the third is moderately persistent. For 
 we use a weakly informative

normally distributed prior, and implement the restriction 
 > (k+N)=T , necessary for the

priors on V and � to be proper, by truncating the posterior draws. The prior mean for 


is centered on 1, which corresponds to giving a-priori the same weight to the GATSM and

the unrestricted VAR. More details on the prior distributions can be found in Appendix D.

The marginal posteriors p(�jY; 
;�) and p(
jY; �;�) do not have a known form but can

be factorized as p(�jY; 
;�) _ p(Y j�; 
;�)p(�; 
;�) and p(
jY; �;�) _ p(Y j�; 
;�)p(�; 
;�),
where p(Y j�; 
;�) is available (see equation (101) in Appendix D), which opens the way
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for drawing from these distributions using Metropolis-Hastings (MH) steps, as e.g. in Del

Negro and Schorfheide (2004) and Giannone, Lenza and Primiceri (2012).

Given the draw of deep parameters � and 
 obtained in Step 1 and Step 2, draws

from p(V jY; �; 
;�) and p(�jY; V; �; 
;�) in Step 3 and Step 4 can be obtained by a simple
MC draw based on the closed form expressions (23) and (24). In Step 5, draws from

the conditional posterior distribution of the stochastic volatility factor p(�jY;�; V; �) are
obtained using a (sequence of) Metropolis step(s) based on the density kernel (27) and the

acceptance probability (28). Finally, Step 6 draws from p(�jY;�) using standard results
for the univariate linear regression model. More details on the algorithm are provided in

Appendix D.

By iterating on steps 1�6 we get the full joint and marginal posteriors of �;�; V; �; 
; �.
Estimation of the homoskedastic version of the model proceeds along the same lines, but of

course for this case steps 5 and 6 are not needed.

5 Empirical application

In this section we present an empirical application of our method using U.S. data. Data

are zero-coupon Fama-Bliss yields, at monthly frequency, for maturities 3 months and 1,

2, 3, 5, 7, and 10 years and are plotted in Figure 1.11 Our sample extends from January

1985 through December 2007, which covers a relatively stable monetary policy regime, and

is in line with JSZ and Joslin, Priebsch, and Singleton (2012). Indeed, there is substantial

evidence that the Federal Reserve changed its policy rule during the early 1980�s (Clarida,

Gali, and Gertler 2000, Taylor 1999), while the 2008 �nancial crisis and the consequent

non-standard monetary policy led to highly unusual movements in the term structure, and

eventually resulted in short-term interest rates getting close to the zero lower bound (Bauer

and Rudebusch 2013, Christensen and Rudebusch 2013).

We estimate all of our VAR speci�cations using 3 lags, chosen via the Bayesian Infor-

mation Criterion computed on the full sample.

All the results in the paper are based on four parallel MCMC chains. Each chain is

composed of 15,000 draws, from which we eliminate the �rst 2500 as burn-in, and on which

we retain each 25-th draw, for a total of 500 clean draws per chain, which provides 2000

clean draws in total when merging the draws from the di¤erent chains. As we detail in

Appendix D, we initialize the algorithm using the posterior mode of the model, conditional

on a maximum likelihood estimate of the common stochastic volatility factor.

11We thank Robert Bliss for providing us with the data.
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5.1 In-sample results

We start with in�sample estimation of the JSZ � V AR � CSV model using the complete

sample period of 1985-2007.

Table 1 contains information about the convergence of the MCMC algorithm. Panel A

displays descriptive statistics for the Ine¢ ciency Factors (IFs) proposed by Geweke (1996),

while Panel B contains the Potential Scale Reduction Factors (PSRFs) of Gelman and Rubin

(1992). The IFs are computed separately for each chain and then pooled together before

computing the descriptive statistics, while the PSRFs are based on the computation of the

between-chain and within-chain variance of the four independent chains. A value of the IFs

below 20 and of the PSRFs below 1.2 are generally taken as indication that each of the

chains has converged to the target distribution (see e.g. Justiniano and Primiceri 2008). As

is clear from the �gures in Table 1, our algorithm shows good mixing properties and has

achieved convergence. As it is reasonable to expect, the homoskedastic version of the model

converges faster than the heteroskedastic one and shows better mixing properties.

Table 2 contains estimates of the structural parameters of the model. In order to high-

light the e¤ect that the tightness parameter 
 has on the estimates, besides the results based

on the full estimation of the model where 
 has been integrated out, we also report esti-

mates obtained by keeping 
 �xed to some values, along with results obtained by maximum

likelihood estimation of the JSZ model. In the �rst group of columns the table reports

results for the homoskedastic version of the model, the JSZ � V AR. When the tightness 

approaches in�nity, this model approaches the JSZ model, whose estimation results, based

on maximum likelihood estimation, are reported in the last column of the table. Finally,

the columns in the middle of the table report results for the JSZ � V AR� CSV .
Our estimates are in line with those reported by JSZ12. In particular,our estimates of

the parameters �Q1 ; �
Q
2 ; �

Q
3 are -0.0023, -0.034, and -0.148, close to the values estimated

by JSZ, -0.0024, -0.0481, and -0.0713. These values imply an almost nonstationary �rst

factor, a highly persistent second factor, and a persistent third factor. Our estimate of kQ1
is 0.032, which corresponds to a value for the long run mean of the short term rate under

the risk neutral measure of 13.91 percent (per annum).13 With regard to the conditional

12 In comparing with JSZ, we consider the results for the speci�cation they label RPC, which is the closest

to ours, with some di¤erences. In particular, the RPC speci�cation of JSZ is based on a model in which

the factors are priced without error, and the data-set is slightly di¤erent, as we use the 3-month rate rather

than the 6-month rate. Finally, note that we report results for kQ1 while JSZ report the value of the long

run mean of the short term rate under the risk-neutral measure, which is given by rQ1 = �kQ1=�Q1 .
13This value is well above the value of 8.61 obtained by JSZ in their baseline speci�cation, but is close to

some other values they report for some alternative speci�cations (11.2). This happens because our sample is
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variances of the factors, our values are in general smaller than those reported in JSZ, due

to the fact that our speci�cation allows for measurement errors which of course implies a

better in-sample �t.

The estimates of JSZ�V AR�CSV and JSZ�V AR models are broadly similar. Form
the table is clear that, as expected, when the tightness parameter 
 increases the posterior

means tend to move towards the JSZ estimates, and the posterior variances shrink. For the

case in which 
 is estimated on the full sample, its mean is 0.48 with a standard deviation

of 0.056 for the JSZ � V AR � CSV model, and 0.47 with a standard deviation of 0.053

for the JSZ � V AR model. In the recursive samples which we will use in our forecasting

exercise, 
 ranges from 0.4 to 1.2.

Figure 2 displays the posterior distribution of the common stochastic volatility factor

�t, while Figure 3 displays the implied time series of the stochastic volatilities for each of

the yields in the VAR, obtained using the estimates of �t and equation (12). As is well

known, there have been periods of high and of low volatilities throughout the sample under

examination, and this is captured in our estimates.

5.2 Forecasting exercise

We now consider a pseudo-out-of-sample forecasting exercise. We start with an estimation

window ranging from January 1985 to December 1994, we estimate the model, and we

produce forecasts for the period January 1995 to December 1995 (i.e. up to 12 steps ahead).

Then we add one data point to the sample, namely January 1996, and we re-estimate the

model and again produce forecasts up to 12 steps ahead. We proceed in this way until

we reach the end of the sample, using a last estimation window that includes data up to

November 2007.

In the forecast comparisons we consider three models. The �rst is the JSZ�V AR�CSV
model, featuring both time variation in volatility and shrinkage towards the JSZ restrictions.

The second model, the JSZ � V AR, features only shrinkage towards the JSZ restrictions
while the volatilities are kept constant. The third model, labelled BV AR � CSV , does
feature time varying volatility, but the shrinkage is towards the prior mean and variances

of a Minnesota style prior, i.e. it is implementing the a-priori belief that the yields follow

univariate random walks.14 We compute the relevant moment matrices � ~X�0 ~X� ;� ~Y �0 ~X� ; and

di¤erent both in the time series and in the cross-sectional dimension. In particular we use the 3-month rate,

and data from 1985, which explains the higer value of its mean.
14The Minnesota-style prior we implement is the same as Kadiyala and Karlsson (1997), augmented with

the �sum of coe¢ cients" and �dummy initial observation" priors proposed in Doan et al. (1984) and Sims

(1993), with the hyperparameter choice of Sims and Zha (1998). Both these priors are in line with the
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� ~Y �0 ~Y � based on this alternative prior and then we use them in expressions (23) and (24).

Besides the use of these prior matrices, all the remaining characteristics of the model are

left unchanged and the model is estimated using the same MCMC sampler as the JSZ-VAR-

CSV. In particular, also the overall tightness on this prior is optimally chosen by estimating

the parameter 
 via a Metropolis step.

We obtain forecast distributions by sampling as appropriate from the posterior distribu-

tions of the considered models. For example, in the case of the JSZ � V AR�CSV model,
for each set of draws of parameters, we: (1) simulate volatility time paths over the forecast

interval using the AR(1) structure of log volatility; (2) draw shocks to each variable over the

forecast interval with variances equal to the draw of Vt+h; and (3) use the VAR structure

of the model to obtain paths of each variable. We form point forecasts as means of the

draws of simulated forecasts and density forecasts from the simulated distribution of fore-

casts. Conditional on the model, the posterior distribution re�ects all sources of uncertainty

(latent states, parameters, hyperparameters, and shocks over forecast interval).

We compare the performance of the considered models against forecasts produced by

a simple random walk. Our use of the random walk as a benchmark is based on a large

body of evidence documenting that such a model is particularly di¢ cult to beat in term

structure forecasting. Several term structure models have a hard time in improving over

a simple random walk forecast, especially so at short horizons, as documented in several

studies including Du¤ee (2002), Diebold and Li (2006), Christensen, Diebold and Rudebusch

(2011), and Carriero, Kapetanios and Marcellino (2012). Point forecasts from the random

walk are simply set to the value of the yields in the previous period. Density forecasts are

produced by simulating yields over the forecast interval using a random walk speci�cation

for yields and innovations to yields with variance equal to the variance of changes in yields

over the estimation sample.

belief that macroeconomic data typically feature unit roots, and the �dummy initial observation" favors

cointegration. This prior is similar to that of Sims and Zha (1998), with the subtle di¤erence that in the

original implementation the prior is elicited on the coe¢ cients of the structural representation of the VAR

rather than on the reduced form as it is here. This prior has been widely used in the literature, which

documented its competitiveness in forecasting macroeconomic data, see e.g. Leeper, Sims, and Zha (1996),

Robertson and Tallman (1999), Waggoner and Zha (1999), and Zha (1998), and more recently Giannone,

Lenza and Primiceri (2012) and Carriero, Clark and Marcellino (2013).
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5.3 Forecast evaluation

We evaluate both point and density forecasts of the examined models. For point forecasts,

we evaluate our results in terms of Root Mean Squared Forecast Error (RMSFE) for a

given model. Let ŷ
(i)
t+h(M) denote the forecast of the i-th yield y

(i)
t+h made by model M:

The RMSFE made by model M in forecasting the i-th variable at horizon h is:

RMSFEMi;h =

r
1

P

X�
ŷ
(i)
t+h(M)� y

(i)
t+h

�2
; (34)

where the sum is computed over all the P forecasts produced.

To provide a rough gauge of whether the RMSFE ratios are signi�cantly di¤erent

from 1, we use the Diebold and Mariano (1995) t-statistic for equal MSE, applied to the

forecast of each model relative to the benchmark. Our use of the Diebold-Mariano test with

forecasts that are, in some cases, nested is a deliberate choice. Monte Carlo evidence in

Clark and McCracken (2011a,b) indicates that, with nested models, the Diebold-Mariano

test compared against normal critical values can be viewed as a somewhat conservative

(conservative in the sense of tending to have size modestly below nominal size) test for

equal accuracy in the �nite sample. As our proposed model can be seen as nesting the

benchmarks we will compare it against, we treat the tests as one-sided, and only reject the

benchmark in favor of the null (i.e., we don�t consider rejections of the alternative model

in favor of the benchmark). In the tables we will present, di¤erences in accuracy that are

statistically di¤erent from zero are denoted by one, two, or three asterisks, corresponding to

signi�cance levels of 10%, 5%, and 1%, respectively. The underlying p-values are based on

t-statistics computed with a serial correlation-robust variance, using a rectangular kernel,

h� 1 lags, and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997).
The overall calibration of the density forecasts can be measured with the average of log

predictive likelihoods (density scores henceforth), motivated and described in, e.g., Geweke

and Amisano (2010). For model Mi, the h-step ahead score is de�ned as:

SCOREMi;h =
1

P

X
log p(y

(i)
t+hjy

(t);M); (35)

where the sum is computed over all the P forecasts produced, y(i)t+h denotes the observed

outcome for the data in period t+h, and y(t) denotes the history of data up to period t (the

sample used to estimate the model and form the prediction for period t+h). The predictive

density p(�) is obtained by univariate kernel estimation based on the MCMC output.
To provide a rough gauge of the statistical signi�cance of di¤erences in density scores,

we use the Amisano and Giacomini (2007) t-test of equal means, applied to the log score

for each model relative to the benchmark random forecast. We view the tests as a rough
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gauge because, with nested models, the asymptotic validity of the Amisano and Giacomini

(2007) test requires that, as forecasting moves forward in time, the models be estimated with

a rolling, rather than expanding, sample of data. As our proposed model can be seen as

nesting the benchmarks we will compare it against, we treat the tests as one-sided, and only

reject the benchmark in favor of the null (i.e., we don�t consider rejections of the alternative

model in favor of the benchmark). In the tables we will present, di¤erences in average

scores that are statistically di¤erent from zero are denoted by one, two, or three asterisks,

corresponding to signi�cance levels of 10%, 5%, and 1%. The underlying p-values are based

on t-statistics computed with a serial correlation-robust variance, using a rectangular kernel,

h� 1 lags, and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997).

5.4 Out-of-sample forecasting results

We now turn to the evaluation of the point and density forecasting performance of the

proposed model. The evaluation is based on forecasts produced for the period going from

January 1995 to December 2007, using the recursive scheme described in section 5.2.

Table 3 and Table 4 present results for point and density forecasts, respectively. In the

tables, the �rst panel contains the RMSFEs and SCOREs obtained by using the random

walk forecasts, for which the underlying forecast units are basis points. The remaining panels

display the relative RMSFEs and di¤erences in SCOREs of the competing models relative

to the random walk. A �gure below 1 in the relative RMSFEs, or above 0 in the SCOREs,

signals that a model is outperforming the random walk benchmark. As the SCOREs are

measured in logs, a score di¤erence of say 0:05, signals a 5% gain in terms of density forecast

accuracy. The best model for each forecast horizon and yield is highlighted in bold, while

the stars *,**,***, to the right of the entries signal rejection of the null of equal forecast

accuracy at 10, 5, and 1 percent level.

Several conclusions emerge from the tables. Focusing on point forecasts, both the JSZ�
V AR and the JSZ�V AR�CSV in general outperform the random walk benchmark. The
gains tend to increase with the forecast horizon, and to be relatively higher for shorter

maturities, consistent with the GATSM evidence in such studies as Christensen, Diebold

and Rudebusch (2011) and Diebold and Rudebusch (2013).

At short horizons, the JSZ�V AR and the JSZ�V AR�CSV models perform equally,
as the e¤ect of changing volatility is small on point forecasts at such short horizons. However,

at longer horizons, the presence of stochastic volatility combined with the nonlinearities in-

herent in multi-step forecasting implies that the forecasts from the two models tend to di¤er,

with the JSZ � V AR model being slightly better, although formal tests of equal accuracy
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(not reported in the table) reveal that such di¤erences are never statistically signi�cant.

Arguably, shrinkage can help forecasting regardless of the direction in which it is applied,

simply because it reduces the problem of over-parameterization typical of a large Vector

Autoregression. However, the JSZ � V AR and JSZ � V AR� CSV models both improve

over the BVAR with a Minnesota style prior and common stochastic volatility. This shows

that it is not only the use of shrinkage per se, but also the direction of such shrinkage

which yields the forecasting gains. Hierarchical modelling of both the prior means and prior

variances of a VAR coe¢ cients helps more than a hierarchical modelling limited to the prior

variances.

Focussing on density forecasts, the JSZ � V AR�CSV model systematically produces

the best density forecasts, outperforming all remaining models, including the random walk

benchmark.

As in the case of the point forecasts, the gains against the random walk benchmark are

increasing with the forecast horizon, for both the JSZ�V AR�CSV and the JSZ�V AR
model, but the contribution of variation in volatility to such forecasting gains is decreasing

with the forecast horizon. For example, the 1-step ahead forecast of the 3-month yield made

by the JSZ � V AR � CSV obtains a gain vis-a-vis the random walk which is more than

double of the gain obtained by the JSZ � V AR (30% vs 13%). The 12-step ahead forecast

of the same variable leads higher gains against the random walk, but the scores under the

JSZ�V AR�CSV and JSZ�V AR models are much closer (126% and 119% respectively).
This is due to the fact that, at longer horizons, the projected volatilities tend to converge

to their unconditional mean, thereby reducing the di¤erence between homoskedastic and

heteroskedastic models. Such a feature is not speci�c to our model, but is likely to appear

in any model featuring (stationary) time variation in the volatilities.

Also, note that the density forecasting performance of the BV AR � CSV is strongly

related to its point forecasting performance: the BV AR�CSV produces good/bad density
forecasts whenever it produces good/bad point forecasts (at the short/long end of the curve,

respectively). This suggests that while the presence of variation in volatility does help this

model to produce a reasonable assessment of uncertainty around the point forecasts, the fact

that, under the prior, such density forecasts are centered around a random walk forecast

rather than a GATSM-based forecast reduces its overall forecasting performance.

To summarize, both the JSZ � V AR � CSV and the JSZ � V AR models produce

competitive point and density forecasts, systematically outperforming the RW benchmark.

The gains against the random walk increase with the forecast horizon. The JSZ � V AR�
CSV speci�cation produced the best density forecasts throughout the sample. The gains
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in using a speci�cation with time varying volatility tend to die out as the forecast horizon

increases.

5.5 Subsample analysis

In order to assess the stability of our results throughout the sample, we have computed the

loss functions (RMSFE and SCORE) recursively. In particular, starting from January 1996,

we compute the relative RMSFE and SCORE di¤erence of the JSZ �V AR�CSV against
the RW, based on the sample 1995:1 to 1995:12, then we add one more forecast evalua-

tion period and repeat the computation, and so forth until the last evaluation period, i.e.

December 2007, is reached.

Results of this exercise are displayed in Figure 4 and Figure 5 for point and density

forecast, respectively. In order to avoid cluttering the graphs, we focus only on the four

combinations given by the shortest and longest maturity in our sample (3-month and 10-

year rate) and by the shortest and longest forecast horizon (1- and 12- step ahead). Results

for the remaining combinations show patterns that are in between the ones displayed in

these �gures.

In Figure 4, the relative RMSFE against the RW is reported. A value below 1 signals

that the JSZ � V AR � CSV is outperforming the RW benchmark. Also, as the series

depicted is a recursive mean, whenever the series is trending downwards the forecasting

performance of the JSZ � V AR�CSV is improving (relative to the RW), while when it is
trending upwards, the forecasting performance is deteriorating. From an inspection of the

picture several conclusions can be drawn.

At the 1-step ahead forecast horizon, the JSZ�V AR�CSV is overall outperforming the
RW throughout the sample, but the relative gains were not stable. For the short term yield,

the JSZ�V AR�CSV performs well at the beginning of the sample, but then the forecasting
performance deteriorates during the end of the nineties, and by 1999 the performance is on

average the same as the one of the RW. From 1999 onwards, the performance steadily

improves and reaches the average RMSFE of 0.85%. For the 10-year yield instead, the

deterioration in forecasting performance is slower, the relative RMSFE is always below 1

before 2004, and then stays quite steadily around this value until the end of the sample.

At the long forecast horizon the behavior is rather di¤erent. In this case, the JSZ �
V AR � CSV underperforms the RW at the beginning of the sample, but then it starts

dramatically improving around 1999, and the improvements continues steadily for the short

end of the curve. For the long end, it is interesting to note that, within a similar pattern

of improving relative RMSFE, there are some periods in which the forecasting performance
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deteriorates, and these are around 2001-2002 and after 2007, which were both characterized

by large instability in the market.

Therefore, with regard to point forecast, the overall pattern is that -over time- the

JSZ � V AR � CSV forecasts improved for the long-end of the curve and deteriorated for

the short-end, and that long-horizon forecasts of the long-end of the curve are particularly

problematic during periods of �nancial instability.

Turning to density forecasts, results are displayed in Figure 5. In this �gure we report the

di¤erence in the average SCORE between the JSZ � V AR�CSV and the RW. Therefore,
a value of the time series above 0 signals that the JSZ�V AR�CSV is outperforming the
RW in density forecasts. Also, as the series depicted is a recursive mean, whenever the series

is trending upwards the forecasting performance of the JSZ � V AR � CSV is improving

(relative to the RW), while when it is trending downwards, the forecasting performance is

deteriorating. From an inspection of the picture several conclusions can be drawn.

At the 1-step ahead forecast horizon, the JSZ � V AR � CSV is overall outperforming

the RW throughout the sample, with quite stable di¤erences in the SCOREs. However it

is also apparent that the model works much better during periods of high volatility, while

the RW tends to improve its forecasting performance during calmer periods. At the long

forecast horizon the pattern is similar, with the JSZ�V AR�CSV performing particularly
well in the �rst part of the sample, up to and including 2001, and then deteriorating slowly

during the period 2002-2005. After 2005, the volatility increases and the JSZ�V AR�CSV
improves its performance.

5.6 The role of the factor structure and no arbitrage restrictions

In this section we discuss two remaining relevant issues: i) to what extent imposing the

GATSM as a prior improves with respect to imposing it exactly, and ii) to what extent the

results are driven by the imposition of the no-arbitrage restrictions on the loadings of the

system rather than by the other assumptions implicit in the GATSM, and in particular the

assumption of a factor structure for the yields.

In order to address the �rst issue we have computed forecasts based on the GATSM

model described by equations (6) and (7). We estimate the model using Gibbs sampling

using the same prior set-up as for the JSZ � V ARs, after estimating the factors in a pre-
liminary step via principal components.15 As the GATSM is homoschedastic, we compare

15A full Bayesian estimation would require �ltering the factors using e.g. the Carter and Kohn (1994)

algorithm. We do not pursue this strategy here for simplicity, and because as shown in JSZ the �ltered

estimates of the factors are almost indistinguishable from the principal components. Arguably this choice
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it against the homoschedastic version of the model (JSZ � V AR). Results for this exper-
iment are presented in Table 5, which contains the relative RMSFE and average di¤erence

in SCORE of the GATSM relative to the JSZ�V AR. For point forecasts, the JSZ�V AR
outperforms the GATSM in all but two cases. The gains are more pronounced at longer

forecast horizons, where they can range between 17% and 28%. For density forecasts, the

gains are systematic and always signi�cant, more pronounced at short horizons. An inspec-

tion at the density forecasts reveals that the GATSM tends to produce too large predictive

density, a feature that stems from the fact that it contains disturbances in both the obser-

vation and transition equation, while in the JSZ�V AR these disturbances enter indirectly
via the speci�cation of the prior mean and variances of the VAR coe¢ cients, on which the

requirement of stationarity imposes a constraint on the posterior draws. The overall picture

shows that using the model as a prior signi�cantly improves its forecasts, in line with the

results of Carriero (2004).

We now turn to the second issue. As we stressed in Section 2, the GATSM-prior imposes:

i) a factor structure for the yields, ii) a particular dynamic structure for the factors under the

P measure (a VAR(1) homoskedastic process), and iii) a set of restrictions on the observation
equation of the system. Here we want to evaluate the role of these latter restrictions. In

order to do so, we have re-estimated the model using a prior that only implements (i) and

(ii) without imposing (iii). This can be done by simply concentrating out, via an OLS

regression on the principal component of the yields, the coe¢ cients in the vector Ap(�
Q
P )

and the matrix Bp(�
Q
P ) appearing in (7), which implies that these coe¢ cients are no longer

a function of the deep parameters �QP .
16

Results of this experiment are displayed in Table 6. The results shown in the table

are striking, and clearly indicate that the cross-equation no arbitrage restrictions on the

loadings only play a minor role in improving forecast accuracy. In terms of point forecasts,

the additional gains of imposing the restrictions is minimal and never signi�cant, although

it is important to mention the fact that they are always positive. In terms of density

forecasts the pattern is similar, with small, positive gains, but in this case the gains can

be occasionally larger (e.g. 6% for the 1-step ahead forecast of the 3-month yield) and

implicitly under-estimates the overall uncertainty present in the model, which in principle could worsen its

density forecasting performance. However this is not the case in our application, as it turns out that the

reason behind the poor performance of the GATSM is the fact that it tends to produce too wide density

forecasts with respect to the JSZ-VAR, and therefore �ltering the factors would even accentuate such feature.
16Concentrating these coe¢ cients out via OLS estimation is strictly speaking imprecise. However we believe

that the additional complications in terms of estimation which would arise by estimating these parameters

within the Gibbs sampling algorithm o¤sets the bene�ts, and that this strategy is reasonable considering the

fact our goal is simply to establish the relative importance of the cross-equation restrictions.
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signi�cant. The overall picture leads us to conclude that the role of no-arbitrage restrictions

on the loadings is minor; they do not help a lot but they de�nitely do not harm.

These results are in line with the argument of Du¤ee (2011a), who argues that since the

loadings of the model can be estimated with extremely high precision even if no-arbitrage

restrictions are not imposed, the Gaussian no-arbitrage model, absent additional restrictions

on risk premia, o¤ers no advantages over a simple regression-based approach.

Summarizing the �ndings discussed in this section, we �nd that the forecasting per-

formance improves mainly because a factor structure is imposed as a prior within a more

general VAR representation for the yields. Imposing the factor structure exactly consider-

ably worsen the forecasts. One interpretation of this result is that the more general VAR

representation is able to capture more information on the dynamics of the yield curve, which

instead gets lost in a factor model with 3 factors. In this sense, the additional information

on the yields dynamics picked up by our richer VAR speci�cation could be related to the

hidden component of Du¤ee (2011b).17 Instead relaxing the cross-equation restrictions on

the loadings only marginally worsens the forecasts, in line with Du¤ee (2011a).

6 Conclusions

In this paper we propose a way to impose a no arbitrage a¢ ne term structure model as a

prior on a vector autoregression, while allowing also for time variation in the error volatil-

ities. As the volatilities of a panel of yields move closely together, we impose on them a

factor structure in which the volatility of each yield is ultimately related to a common sto-

chastic volatility factor, as in Carriero, Clark and Marcellino (2012). To shrink the VAR

coe¢ cients towards the values implied by an underlying a¢ ne term structure model we use

a methodology similar to that put forward by Del Negro and Schorfheide (2004).

The a¢ ne model towards which VAR coe¢ cients are shrunk is the new canonical form

of no arbitrage models recently introduced by Joslin, Singleton, and Zhu (2011). This new

representation presents very important advantages in the computation of the likelihood,

because it allows one to disentangle the role played by the structural parameters in the

risk neutral and physical measure, which in turn allows one to factorize the likelihood and

concentrate out some parameters, reducing dramatically the di¢ culties typically arising in

the search for the global optimum.

We provide the conditional posterior distribution kernels of the model and we propose

17Du¤ee (2011b) shows that a great deal of information on future term structures is contained in a hidden

component, which enters the dynamics of the yields and at the same time does not explain the (contempo-

raneous) cross section.
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a MCMC algorithm to perform estimation. While we apply the proposed model to term

structure forecasting, this is only one of the possible applications of the method, which

can be applied for a wide range of alternative models, including DSGE models, and can

be considered an extension of the method of Del Negro and Schorfheide (2004) to VARs

featuring drifting volatilities with a common factor structure. Our proposed model also

generalizes the one of Giannone, Lenza and Primiceri (2012), as it speci�es hierarchically not

only the prior variances but also the prior means of the VAR coe¢ cients. Our results show

that a hierarchical speci�cation for the prior means does help in forecasting, highlighting

the fact that not only shrinkage per se, but also the direction towards which shrinkage takes

place, can be helpful.

By estimating the model using U.S. data on government bond yields covering the period

from January 1985 to December 2007, we provide evidence that both the shrinkage toward

the a¢ ne term structure model and the use of time variation in the volatilities can produce

substantial gains in both point and density forecasts. In particular, shrinkage towards a

GATSM model provides better point and density forecasts than a random walk, which is

typically a very strong benchmark in forecasting yields. Both the point and density forecast

gains are increasing with the forecast horizon. The inclusion of time variation in yields

volatilities leads to systematic gains in density forecasts with respect to a homoskedastic

model, especially so at short horizons.

Our �ndings show that the forecasting gains are mainly due to the use of a prior imposing

a factor structure on the yield within a more general VAR representation for the yields,

rather than imposing the factor structure exactly. Instead, the cross-equation restrictions

on the loadings only have a marginal role, in line with Du¤ee (2011a). One interpretation of

these results is that the more general VAR representation is able to capture more information

on the dynamics of the yields with respect to a factor model with 3 factors. In this sense,

the informational gains achieved by the VAR speci�cation could be related to the hidden

components of Du¤ee (2011b).
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Appendix A: derivation of the JSZ representation

To make this paper self-contained, we derive here the JSZ representation of the GATSM. A

more rigorous and detailed description can be found in JSZ. The evolution of n risk factors

(a n-dimensional state vector) is given by:

�St = K
P
0S +K

P
1SSt�1 +�S"

P
t (36)

�St = K
Q
0S +K

Q
1SSt�1 +�S"

Q
t (37)

rt = �0S + �1SSt; (38)

where Q and P denote the risk neutral and physical measures, rt is the short term rate,

�S�
0
S is the conditional variance of the states and the errors are i.i.d. Gaussian random

variables. The model-implied yield on a zero-coupon bond of maturity � is an a¢ ne function

of the state St (Du¢ e and Kan 1996):

eyt(�) = A� (�QS ) +B� (�QS )St (39)

where �QS = fK
Q
0S ;K

Q
1S ;�S ; �0S ; �1Sg and the functions A� (�

Q
S ) and B� (�

Q
S ) are computed

recursively and satisfy a set of Riccati equations:

A�+1 = A� +K
Q0
0SB� + 0:5B

0
��S�

0
SB� � �0S (40)

B�+1 = B� +K
Q0
1SB� � �1S (41)

with initial conditions A0 = B0 = 0. Here the use of the symbol ~ highlights that the yieldseytare assumed to be perfectly priced by the model, i.e. they contain no measurement error.
A preliminary result (Joslin 2007) is that any GATSM can be re-parametrized as follows:

KQ
0S = (kQ1; 0; :::; 0) (42)

KQ
1S = J(�Q) (real Jordan form) (43)

�S = lower triangular

�0S = 0

�1S = i (vector of ones):

The �Q are the (ordered) eigenvalues of KQ
1S : Note that in this case knowledge of k

Q
1; �

Q;�S

will be su¢ cient to compute the loadings so we can write A(�QS ) = A(kQ1; �
Q;�S) and

B(�QS ) = B(�
Q).

Now consider n linear combinations of N yields (that is, portfolios), and label them

Pt = Wyt. Assume for the moment that the portfolios Pt are priced without error. JSZ
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show that i) the state vector St which is in general unobservable can be replaced by the

observable portfolios Pt by means of an invariant transformation, and ii) the Q-distribution

of the observable portfolios Pt is entirely characterized by �
Q
P = fkQ1; �

Q;�P g where �P is
the Cholesky factor of the conditional variance of Pt:18

To derive the JSZ rotation we start from getting a measurement equation in terms of

the states Pt. Rewrite the measurement equation (39) by stacking by columns the equations

for di¤erent yields: eyt
N�1

= A(�QS )
N�1

+B(�QS )
N�n

St
n�1

(44)

with eyt = [eyt(�1); :::; eyt(�N )]0; A(�QS ) = [A�1 ; :::; A�N ]
0; and B(�QS ) = [B0�1 ; :::; B

0
�N
]0. By

premultiplying (44) by W the measurement equation can be stated as:

Pt = AW +B0WSt; (45)

where

AW =WA(�QS ) (46)

and

B0W =WB(�QS ): (47)

From (45) we can get an expression for St:

St = (B
0
W )

�1(Pt �AW ); (48)

and substituting (48) into the measurement equation (44) gives:

eyt = Ap +BpPt (49)

with:

Ap = (I �B(�QS )(B
0
W )

�1W )A(�QS ); (50)

Bp = B(�QS )(B
0
W )

�1; (51)

and:

�P�
0
P = B

0
W�S�

0
SBW : (52)

Note that since B(�QS ) = B(�
Q) and BW =WB(�QS ), the matrix �S can be derived under

knowledge of �Q and �P , and in turn knowledge of kQ1; �
Q;�S yields the coe¢ cients in

18The parameter k1 under Q-stationarity (and if the multiplicity of the �rst eigenvalue �Q1 is m1 = 1)

is related to the risk neutral long run mean of the short rate as follows: kQ1 = ��Q1 rQ1. As a result, it is
possible to de�ne equivalently �QP = r

Q
1; �

Q;�P .
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A(�QS ) = A(kQ1; �
Q;�S). It follows that knowledge of �QP = kQ1; �

Q;�P allows one to

compute Ap and Bp. The JSZ canonical form corresponding to the measurement equation

(49) is:

�Pt = K
P
0P +K

P
1PPt�1 +�P "

P
t (53)

�Pt = K
Q
0P +K

Q
1PPt�1 +�P "

Q
t (54)

rt = �0P + �1PPt: (55)

In their Theorem 1 JSZ state that such form is observationally equivalent to that in (36),

(37), and (38) above. The relation between the two representations can be derived using

the standard formulas for an invariant transformation and is given by:

KQ
1P = BWJ(�

Q)B�1W (56)

KQ
0P = kQ1BW em1 �K

Q
1PAW (57)

�1P = (B�1W )0i (58)

�0P = �AW�1P ; (59)

where em1 is a vector of zeros except for the entrym1 which is one (m1 being the multiplicity

of the �rst eigenvalue �Q1 ).

Now assume the portfolios (and therefore the yields) are measured with error. In this

case we de�ne the observed yields as yt. The interpretation of the portfolios stays the same:

the model based factors are Pt = W eyt as before, but now these di¤er from the observed

factors P ot = Wyt so one needs to �lter the unobserved states Pt. To do so, for a given W;

and �QP = f�
Q; kQ1;�P g it is possible to derive A(�

Q
S ); B(�

Q
S ); AW ; and BW as described

above. Then it is possible to compute the transition equation parameters using (56) to (59)

and the measurement equation parameters using (50) and (51). The measurement error is

given by �y"
y
t . The resulting state space system is:

�Pt = K
P
0P +K

P
1PPt�1 +�P "

P
t (60)

yt = Ap +BpPt +�y"
y
t : (61)

After concentrating out KP
0P and K

P
1P in a preliminary OLS step, the vector of coe¢ cients

necessary to write the model in the state space form (60)-(61) is:

� = (�Q; kQ1;�P ;�y): (62)
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Appendix B: derivation of the moments of the yields under

JSZ

For a given draw of �, it is convenient to compute the moments of the yields under the state

space model in (60)-(61) as follows. Rewrite the state equation as:

Pt = K
P
0P + (K

P
1P + I)Pt�1 +�P "

P
t : (63)

Compute the unconditional mean:

�P = E[Pt] = (I � (KP
1P + I))

�1KP
0P = �KP

1P
�1KP

0P ; (64)

which implies KP
0P = �KP

1P
�P . De�ne the demeaned factors ft = Pt � �P and write:

ft = Pt � �P = �KP
1P
�P + (KP

1P + I)Pt�1 +�P "
P
t � �P = (KP

1P + I)ft�1 +�P "
P
t (65)

and:

yt = Ap +BpPt +�y"
y
t = Ap +Bp(ft +

�P ) + �y"
y
t (66)

The moments of yt implied by the state space system can be computed using (65) and (66)

and are:

E[yty
0
t] = (Ap +Bp �P )(Ap +Bp �P )

0 +Bp�fB
0
p +�y�

0
y (67)

and

E[yty
0
t�h] = (Ap +Bp �P )(Ap +Bp �P )

0 +Bp(K
P
1P + I)

h�fB
0
p; (68)

where �f = E[ftf 0t] solves the Lyapunov equation �f = (K
P
1P + I)�f (K

P
1P + I)

0 +�P�
0
P .

Appendix C: VAR coe¢ cients priors and posteriors

In this appendix we derive the priors and posteriors of the VAR coe¢ cients. Once the data

have been rescaled by the history of volatilities, the approach described is the one of Del

Negro and Schorfheide (2004), to which we refer the reader for further details.

Likelihood

The VAR under consideration is:

yt = �0 +�1yt�1 + :::+�pyt�p + ut: (69)

ut = �0:5t �t; �t � N(0; V ); (70)

log(�t) = �0 + �1 log(�t�1) + �t; �t � iid N(0; �2); (71)
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and can be written in matrix form:

Y = X�+ U; (72)

where Y is a T � N data-matrix with rows y0t, X is a T � k data-matrix with rows x0t =
(1; y0t�1; y

0
t�2; :::; y

0
t�p) and U is a T �N data-matrix with rows u0t. Vectorizing the system

gives:

y = (I 
X)vec(�) + vec(U) (73)

where the variance of u = vec(U) is:

Q = V 
 �: (74)

with:

� = diag(�1; :::; �T ): (75)

The likelihood is:

p(yj�;V;�) = 2��
TN
2 jQj�

1
2 exp(�(y � (I 
X)vec(�))0 Q�1(y � (I 
X)vec(�))=2) (76)

The matrix Q�1 can be written as:

Q�1 = V �1 
 ��1

= (In 
 ��1=2)(V �1 
 IT )(In 
 ��1=2)

= ���1=2(V �1 
 IT )���1=2; (77)

where in the last equality we de�ned ���1=2 = IN 
��1=2: Also, the determinant jQj�
1
2 can

be written as:

j���1=2(V �1 
 IT )���1=2j�
1
2 = (j���1=2jj(V �1 
 IT )j���1=2j)�

1
2

= (j���1jj(V �1jT jIT jN ))�
1
2

= j�jN=2jV jT=2: (78)

Substituting (77) and (78) into (76) gives:

p(yj�;V;�) = 2��
TN
2 j�jN=2jV jT=2 exp(�(y � (I 
X)vec(�))0���1=2(V �1 
 IT )

���1=2(y � (I 
X)vec(�)) =2) (79)

De�ning the rescaled residuals r = ���1=2(y � (I 
 X)vec(�)), the cross-product term in

(79) can be written as r0(V �1 
 IT )r. As r0(V �1 
 IT )r is a scalar, then we can de�ne
vec(R) = r and use tr(D0A0BC) = tr(A0BCD0) = vec(A)0(D 
B)vec(C) to get:

p(yj�;V;�) = 2��
TN
2 j�jN=2jV jT=2 exp(�tr(V �1R0R)=2) (80)
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Note that R0R = (Y � X�)0��1(Y � X�) is the scatter matrix of rescaled residuals.19

Therefore we can write:

p(yj�;V;�) = 2��
TN
2 j�jN=2jV jT=2 exp(�tr(V �1(Y 0��1Y � �0X 0��1Y

�Y 0��1X�+ �0X 0��1X�))) =2): (82)

De�ning:

�̂ = (X 0��1X)�1X 0��1Y (83)

Ŝ = Y 0��1Y � (Y 0��1X)(X 0��1X)�1(X 0��1Y ); (84)

the likelihood can be written as:

P (Y j�; V;�) _ jV j�0:5k expf�0:5tr[V �1(�� �̂)0X 0��1X(�� �̂)]g (85)

� jV j�0:5(T�k) expf�0:5tr[V �1Ŝ]g:

Equation (85) shows that � conditionally on � � the likelihood can be factorized as the

product of an inverse Wishart marginal distribution for � (second line) and a conditional

(on �) matricvariate normal distribution for 	 (�rst line).

Priors on VAR coe¢ cients

Consider a sample of T � = 
T arti�cial observations y� = [y�1; :::; y
�
T � ]

0, where y�t is a vector

of yields of N di¤erent maturities, obeying the GATSM model described by equations (6)

and (7). As the GATSM features a Moving Average representation, it can be approximated

by a su¢ ciently rich Vector Autoregression. The VAR representation of the arti�cial data

y�t is given by:

y�t = �0 +�1y
�
t�1 + :::+�py

�
t�p + u

�
t : (86)

u�t = ��0:5t �t; �t � N(0; V ); (87)

��t = 1 for all t: (88)

19This follows from:

vec(R) = ���1=2(y � (I 
X)vec(�))

= ���1=2vec(Y )� ���1=2(I 
X)vec(�)

= (In 
 ��1=2)vec(Y )� (I 
 ��1=2X)vec(�)

) R = ��1=2Y � ��1=2X� = ��1=2U (81)
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Under the GATSM, the common stochastic volatility factor stays constant at its initial value

of 1, and the yields y�t would have the moment matrices described in (67) and (68). Also

this VAR can be written in matrix form:

Y � = X��+ U�; (89)

where Y � is a T � N data-matrix with rows y�0t , X
� is a T � k data-matrix with rows

x�0t = (1; y
�0
t�1; y

�0
t�2; :::; y

�0
t�p) and U

� is a T � N data-matrix with rows u�0t . The likelihood

of the VAR in (86)-(88) is:

p(y�j�;V ) = 2��
TN
2 jV jT=2 exp(�tr(V �1(Y �0Y � � �X�0Y �

�Y �0X��+ �X�0X��))) =2); (90)

which does not depend on �, as under the GATSM we have � = IT .

The key idea of the method of Del Negro and Schorfheide is to recognize that the like-

lihood of the arti�cial data p(y�j�;V ) carries information about � and V contained in the

sample of arti�cial observations. Such information is not present in the actual data and

can be interpreted as a prior for the coe¢ cients � and V . In principle, one could actually

simulate samples of arti�cial data and use them to augment the VAR in (69)-(71). How-

ever this would be undesirable, because the prior moment matrices X�0X�; X�0Y �; Y �0Y �

would be a¤ected by stochastic variation. To remove stochastic variation in the prior Del

Negro and Schorfheide (2004) substitute the sample moments X�0X�; X�0Y �; Y �0Y � with

their expected values, given by T ��X�0X� , T ��Y �0X�(�), and T ��Y �0Y � , where, for instance,

�Y �0Y � = E[y
�
t y
�0
t ]. Note that the population moments in the matrices � can be computed

using (67)-(68), conditional on knowledge of �. This means that no simulation of arti�cial

data is actually needed, as for each draw of the deep parameters � the corresponding values

of the moment matrices under the GATSM are available in closed form. Also, note that the

total number of arti�cial observations T � is a function of 
 and therefore the prior moments

also depend hierarchically on this hyperparameter.

Adding an initial �at prior p(�; V ) _ jV j�0:5(N+1) and an appropriate constant of inte-
gration (see Del Negro and Schorfheide (2004) for details) one can easily derive from (90) a

prior for � and V :

�jV; �; 
 � N(�̂�(�); V 
 ��1X�0X�(�)); (91)

V j�; 
 � IW (Ŝ�(�); 
T � k); (92)

with:

�̂�(�) = ��1X�0X�(�)�X�0Y �(�); (93)

Ŝ�(�) = 
T (�Y �0Y �(�)� �Y �0X�(�)��1X�0X�(�)�X�0Y �(�)); (94)
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where we have made explicit the conditioning on the hyperparameters � and 
, and where

conditioning onto � is not needed as under the GATSM these parameters are �xed.

Posterior of VAR coe¢ cients

The joint posterior distribution of � and V , conditional on �, will be proportional to the

likelihood (85) times the prior (90) :

p(�;V j�; y) _ jV jT=2 exp(�tr(V �1(Y �0Y � � �X�0Y �

�Y �0X��+ �X�0X��))) =2

j��j1=2jV jT=2 exp(�tr(V �1(Y 0��1Y � �X 0��1Y

�Y 0��1X�+ �X 0��1X�))) =2)

_ jV jT=2 exp(�tr(V �1((Y �0Y � + Y 0��1Y )� �(X�0Y � +X 0��1Y )

�(Y �0X� + Y 0��1X)� + �(X�0X� +X 0��1X)�))) =2 (95)

Using population moments of the arti�cial data yields:

p(�;V j�; y) _ jV jT=2 exp(�
T tr(V �1((�Y �0Y �(�) + Y 0��1Y )� �(�X�0Y �(�) +X
0��1Y )

�(�Y �0X�(�) + Y 0��1X)� + �(�X�0X�(�) +X 0��1X)�)))=2; (96)

which is the kernel of a N-IW distribution:

�jY; V; �; 
;� � N(~�(�); V 
 (
T�X�0X�(�) +X 0��1X)�1); (97)

V jY; �; 
;� � IW ( ~S(�); (
 + 1)T � k); (98)

with:

~�(�) = (
T�X�0X�(�) +X 0��1X)�1(
T�X�0Y �(�) +X
0��1Y ) (99)

~S(�) = (
T�Y �0Y �(�) + Y
0��1Y )

�(
T�Y �0X�(�) + Y 0��1X)0(
T�X�0X�(�)

+0X 0��1X)�1(
T�X�0Y �(�) +X
0��1Y ) (100)

Appendix D: Details on estimation

Priors

The priors on the VAR coe¢ cients V and � are set up hierarchically, using equation (17)

and (18). Therefore, we only need to specify priors for 
; �; �. We do not need a prior on
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the �rst observation of the volatility process �1 as in Cogley and Sargent (2005), as in our

setup this value is constrained to 1 to achieve identi�cation of the variance matrix of the

disturbances �tV .

For the parameter 
, which is measuring the degree with which GATSM-consistent

moments are imposed on the VAR, we set a normal prior centered on 1, with a standard

deviation of 0:25. We truncate the posterior draws by requiring them to be above (k+N)=T ,

as this is the minimum value necessary for the priors on V and � to be proper. The prior

mean of 1 re�ects the belief that the GATSM model and an unrestricted VAR are equally

likely descriptions of the data. The standard deviation of 0:25 is rather large and implies

that our prior is only weakly informative.20

For the GATSM structural parameters � we set either a �at or a weakly informative

prior. In particular, for the 3 coe¢ cients in �Q we set a normal prior �Q1 � N(�0:002; 0:001),
�Q2 � N(�0:02; 0:01), �

Q
3 � N(�0:2; 0:1). Under these prior means the �rst factor (element

of St) is virtually a random walk (it features an autoregressive coe¢ cient of 0:99), the second

is stationary but very persistent (with an autoregressive coe¢ cient of 0:98), and the third

factor is moderately persistent (with an autoregressive coe¢ cient of 0:8). All draws of �Q

implying non-stationary behavior are discarded, as well as all those for which the relation

�Q1 > �
Q
2 > �

Q
3 does not hold.

21 For the coe¢ cients �P we set a normal prior centered on

the Principal Components estimates of a vector autoregression of the observable factors. We

set the standard deviations to half of the prior means, which ensures that a 95% credible

interval for each coe¢ cient is marginally above 0.22 For the remaining coe¢ cients kQ1 and

�y we set an uninformative �at prior.

Finally, for the parameters governing the dynamics of the volatility factor � we set

�0 � N(0; 0:025), �1 � N(0:96; 0:025), and �2 � IG(3 � 0:05; 3):
The priors described above are only weakly informative, and the resulting posterior

estimates move away a fair amount from them. However, to check for robustness, we have

also computed results for a more di¤use version of our priors. In this speci�cation the prior

standard deviation of 
 is set to 1, and we use a completely uninformative, �at prior on

20The values of 
 range from 0.4 to 1.2 troughout the recursive samples, and for the full sample the

posterior mean of 
 is 0.47.
21This condition stems from the fact that the coe¢ cients �Q1 ; �

Q
2 ; �

Q
3 are the ordered eigenvalues of the

matrix KQ
1S , see equation (43).

22 In principle, one should not use likelihood information to calibrate the prior, but doing so for error

variances and using an auxiliary model (in our case PC) is standard practice, see e.g. Doan Litterman

and Sims (1984), Litterman (1986), Sims (1993), Robertson and Tallman (1999), Sims and Zha (1998),

Kadiyala and Karlsson (1997), Banbura, Giannone and Reichlin (2010), Koop (2013), and Carriero, Clark

and Marcellino (2013).
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all the parameters in �. The main di¤erence emerging in this setup is that the resulting

posterior means of 
 are higher. In particular the posterior mean of 
 is estimated to be 1:5

instead of 1:1. This is driven by the fact that the more di¤use prior on � is restricting less the

data under the GATSM prior, and therefore the overall level of misspeci�cation of the model

decreases, thereby increasing the posterior estimate of 
. However, the overall mass of the

posterior of 
 is unchanged, and still lies roughly between 0:25 and 3, and the posterior means

of all the remaining parameters are very similar. This holds in particular for the estimates

of the VAR matrices � and �t, which are the ones on which the forecasts are ultimately

produced, and as a consequence the results of the forecasting exercise are qualitatively

identical under this uninformative version of the prior. However, the uninformative prior

does deteriorate the mixing of the algorithm, and convergence of the MCMC scheme under

such prior requires one to roughly double the number of replications.

MCMC scheme

A key ingredient of our MCMC procedure is the conditional distribution p(Y j�; 
;�), which
can be obtained in closed form using the Bayes formula and the integrating constants of

prior, likelihood, and posterior:

p(Y j�; 
;�) = p(Y j�; V;�)p(�; V j�; 
;�)=p(�; V jY;�) (101)

=

��
T�X�0X�(�) +X 0��1X
��� q

2

��� ~S(�)���� (
+1)T�k
2

j
T�X�0X�(�)j�
q
2

��� ~S�(�)���� 
T�k
2

� (2�)
�qT
2
2
q((
+1)T�k)

2 �qi=1�[((
 + 1)T � k + 1� i)=2]
2
q(
T�k)

2 �qi=1�[(
T � k + 1� i)=2]
:

In expression (101), �[�] denotes the gamma function and the second equality comes from
the normalization constants of the Normal-Inverted Wishart distributions.

The algorithm for estimation draws in turn from the following conditional posterior

distributions:

1. Draw from the conditional posterior distribution of 
; p(
jY; �;�);

2. Draw from the conditional posterior distribution of �; p(�jY; 
;�);

3. Draw from the conditional posterior distribution of V; p(V jY; �; 
;�);

4. Draw from the conditional posterior distribution of �; p(�jY; V; �; 
;�);
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5. Draw from the conditional posterior distribution of �; p(�jY;�; V; �); and

6. Draw from the conditional posterior distribution of �; p(�jY;�);

Note that steps 1-4 allow to retrieve draws from �; V; �; 
jY;�; �, while steps 5-6 pro-
vide draws from �; �jY;�; V; �; 
, and therefore cycling through these two groups of steps
resembles a Gibbs sampler and provides draws from the joint posterior �; V; �; 
;�; �jY .

Step 1: Drawing from 
jY; �;�

The p.d.f. p(
jY; �;�) does not have a known form but it can be factorized as p(
jY; �;�) _
p(Y j�; 
;�)p(�; 
;�). The prior distribution p(�; 
;�) can be further factorized as p(
)

times p(�;�), but the latter is constant in this step. Therefore we have p(
jY; �;�) _
p(Y j�; 
;�)p(
). As p(Y j�; 
;�) is given by (101) and p(�) is known, draws from 
jY; �;�
can be obtained trough a random walk Metropolis step.

Step 2: Drawing from �jY; 
;�

The p.d.f. p(�jY; 
;�) can also be factorized as p(�jY; 
;�) _ p(Y j�; 
;�)p(�; 
;�). The
prior distribution p(�; 
;�) can be further factorized as p(�) times p(
;�), with the latter

constant in this step. Therefore we have p(�jY; 
;�) _ p(Y j�; 
;�)p(�). As p(Y j�; 
;�) is
given by (101) and p(�) is known, draws from �jY; 
;� can be obtained trough a Metropolis
step. To improve the mixing we use a multiple block Metropolis-Hastings algorithm, drawing

in turn from three blocks of elements of �: �Q and kQ1, �P , and �y. The candidate draws

are generated through random walk steps, with variances calibrated using the Hessian of

the model at the posterior mode.

Step 3: Drawing from V jY; �; 
;�

Draws from V jY; �;� can be obtained via a MC step using expressions (98).

Step 4: Drawing from �jY; V; �; 
;�

Draws from �jY; V; �;� can be obtained via a MC step using expressions (97).

Step 5: Drawing from �jY;�; V; �

For a given draw of �; V; �; � we can draw the stochastic volatilities as did Carriero, Clark,

and Marcellino (2012). Their method is a modi�cation of Cogley and Sargent (2005) to

allow for a single stochastic volatility factor. The kernel of p(�jY;�; V; �; �) is given by:
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p(�jY;�; V; �) =
TY
t=1

p(�tj�t�1; �t+1; �; wt); (102)

where wt = (w1t; :::; wnt) = V �1=2ut is a vector of orthogonalized residuals and where the

disappearance of all values beyond 1 lead and lag is a consequence of the Markov property of

the process assumed for �t. As the rescaled residuals wt contain all the information given by

Y;�; V; we have substituted conditioning with respect to these variables with conditioning

with respect to wt to simplify the notation. The generic element p(�tj�t�1; �t+1; �; wt) in
the products (102) can be factorised as:

�(�tj�t�1; �t+1; �; wt) _ p(wtj�t; �)p(�t+1j�t; �)p(�tj�t�1; �) (103)

The p.d.f. p(wtj�t; �) is a normal, while p(�t+1j�t; �) and p(�tj�t�1; �) are log-normal. Writ-
ing them down we have:

p(wtj�t; �) _ ��0:5t exp(�0:5w21t=�t)� ��0:5t exp(�0:5w22t=�t)

�:::� ��0:5t exp(�0:5w2nt=�t) (104)

p(�t+1j�t; �)p(�tj�t�1; �) = ��1t exp(�0:5(ln�t � �t)2=�2c) (105)

In (104) there are no cross terms because the orthogonalized residuals are by construction

independent. Equation (105) comes from the product of the two lognormals, and it is

slightly di¤erent at the beginning and end of the sample. The parameters �t and �
2
c are the

conditional mean and variance of log �t given �t�1 and �t+1. For periods 2 through T � 1,
the conditional mean and variance are �t = (�0(1� �1) + �1(log �t�1 + log �t+1))=(1 + �21)
and �2c =

q
�2=(1 + �

2
1), respectively (the conditional mean and variance are a bit di¤erent

for period T , while in period 1 �t is set to 1 to achieve identi�cation of the variance matrix

of the disturbances �tV ).

Draws from �t are obtained using a sequence of Metropolis steps starting from t = 2.

and ending in t = T . In each period, a candidate draw ��t is extracted from a proposal

distribution, and then it is accepted with probability a. By choosing as proposal distribution

q(�) _ p(�t+1j�t; �)p(�tj�t�1; �) the acceptance probability will simplify to:

a = min

�
p(wtj��t ; �)
p(wtj�t; �)

; 1

�
; (106)

where:

p(wtj��t ; �)
p(wtj�t; �)

=
���n�0:5t

Yn

i=1
exp(�0:5w2it=��t )

��n�0:5t

Yn

i=1
exp(�0:5w2it=�t)

: (107)
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Note this di¤ers from Cogley and Sargent (2005), as in their case each volatility process

�it; i = 1; :::n; is drawn separately conditional on the remaining n � 1, which means that
n�1 elements in the products �ni=1 exp(�0:5w2it=��t ) and �ni=1 exp(�0:5w2it=�t) would cancel
out.

Step 6: Drawing from �jY;�

Finally, given the Normal priors for �0 and �1 and the Inverse Gamma prior for �2, the

posterior distributions are conjugate and can be computed using standard methods.

Initialization of the algorithm

We set the initial value for 
 to its prior mean of 1, which represents equal belief in the

GATSM and the unrestricted VAR model. To initialize the algorithm, we start with es-

timating the GATSM model using maximum likelihood as in JSZ, which provides us with

the ML estimates �ML. Using �ML and � = I as initial conditions we maximize with re-

spect to � the conditional posterior of the model, given by p(�jY; 
;�) _ p(Y j�; 
;�)p(�),
where p(Y j�; 
;�) is given by (101). For the homoskedastic model, this provides us with
the value �� which maximizes the posterior, and we use this as initial value for �. For the

heteroskedastic model, two additional steps are needed in order to get an initial value for

the volatility, and an initial value for � for the model with varying volatility. We use ��

to compute the posterior means of the VAR in (21), and derive the implied residuals. We

then use these residuals to perform a quasi-maximum likelihood estimation of � (based on a

Kalman �ltering with the adjustment proposed by Harvey, Ruiz and Shepard (1994)). The

resulting maximum likelihood estimates �ML are used as initial conditions for the volatility.

Finally, using �ML and �� as initial conditions we maximize again the conditional posterior

of the model with respect to �, which provides us with the value ��� which maximizes the

posterior of the model conditional on �ML. The resulting estimates ��� are used as initial

conditions for the MCMC sampler, while the Hessian at the maximum is stored in order to

be used to calibrate the Metropolis steps.
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Figure 1: Fama-Bliss zero coupon yields for the US.
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Figure 2: Posterior distribution of the Common Stochastic Volatility process �t. The shaded area
contains all the �nal 2000 draws.
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Figure 3: Volatilities for each yield (posterior medians).
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Figure 4: Recursive Relative RMSFE of the JSZ�V AR�CSV versus the RandomWalk. Recursive
means are computed starting from January 1996.
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Table 1. Convergence Diagnostics

PANEL A: Inefficiency Factors PANEL B: Potential Scale Reduction Factors

Median Std 5% 95% Min Max Median Std 5% 95% Min Max

JSZ-VAR

θ 1.6 0.53 0.84 2.6 0.78 2.6 1 0.001 0.999 1 0.999 1

γ 1 0.11 0.94 1.2 0.94 1.2 0.998 0.005 0.997 1.01 0.997 1.01

V 1.2 0.16 0.95 1.5 0.86 1.6 1 0.002 0.999 1 0.999 1

Φ 0.97 0.23 0.63 1.3 0.46 1.8 1 0.001 0.999 1 0.999 1.01

JSZ-VAR-CSV

θ 5.1 3.4 1 11 0.77 13 1.07 0.048 1 1.13 0.999 1.13

γ 1.1 0.4 0.6 1.4 0.6 1.4 1 0.004 0.997 1 0.997 1

V 11 2 8.4 15 6.8 15 1.16 0.009 1.14 1.17 1.13 1.17

Φ 0.94 0.22 0.64 1.4 0.46 1.8 1 0.001 0.999 1 0.999 1

Λ 4.7 1.6 2.7 7.9 2 10 1.06 0.012 1.04 1.08 1.03 1.09

φ 2 0.94 1.4 4.6 1.4 4.8 1.02 0.010 1.02 1.03 1.02 1.03

All the results in the paper are based on four parallel MCMC chains. Each chain is composed of 15000 draws, from 

which we eliminate the first 2500 as burn-in, and on which we retain each 25-th draw, for a total of 500 clean 

draws per chain, which provides 2000 clean draws in total when merging the draws from the different chains. The 

IFs are computed separately for each chain and then pooled together before computing the descriptive statistics, 

while the PSRFs are based on the computation of the between-chain and within-chain variance of the four 

independent chains. 



Table 2. Structural Coefficient Estimates

JSZ-VAR (homoskedastic ) JSZ-VAR-CSV JSZ

Tightness: 0.5 1 2 10

integrated 

out 0.5 1 2 10

integrated 

out (inf)

Parameter (x 100)

λ1
Q -0.224 -0.206 -0.182 -0.236 -0.227 -0.228 -0.220 -0.205 -0.274 -0.229 -0.231

0.087 0.081 0.073 0.045 0.087 0.089 0.080 0.070 0.042 0.087 0.007

λ2
Q -2.855 -2.898 -3.017 -3.638 -2.800 -3.147 -3.251 -3.355 -3.512 -3.118 -3.411

0.530 0.450 0.390 0.250 0.568 0.537 0.458 0.393 0.198 0.541 0.118

λ3
Q -11.990 -11.310 -10.970 -13.610 -12.255 -12.120 -11.544 -11.454 -14.179 -12.091 -14.811

2.200 1.700 1.400 1.300 2.261 2.008 1.553 1.277 1.118 2.052 0.536

kQ 0.009 0.009 0.010 0.022 0.009 0.010 0.012 0.015 0.031 0.011 0.032

0.006 0.006 0.005 0.003 0.006 0.006 0.006 0.005 0.004 0.007 0.001

ΣP(1,1) 0.674 0.681 0.693 0.716 0.673 0.733 0.786 0.765 0.862 0.775 1.005

0.048 0.042 0.035 0.032 0.051 0.093 0.098 0.086 0.101 0.099 0.015

ΣP(2,1) -0.116 -0.115 -0.115 -0.105 -0.117 -0.159 -0.168 -0.161 -0.155 -0.165 -0.165

0.021 0.019 0.017 0.014 0.022 0.027 0.026 0.024 0.024 0.028 0.007

ΣP(2,2) 0.202 0.207 0.211 0.218 0.201 0.212 0.229 0.223 0.254 0.224 0.233

0.017 0.013 0.012 0.010 0.017 0.030 0.032 0.026 0.030 0.033 0.011

ΣP(3,1) -0.071 -0.069 -0.069 -0.066 -0.071 -0.092 -0.097 -0.093 -0.095 -0.095 -0.021

0.011 0.010 0.009 0.008 0.012 0.015 0.015 0.013 0.014 0.016 0.004

ΣP(3,2) 0.031 0.033 0.034 0.042 0.031 0.029 0.031 0.033 0.050 0.029 0.045

0.009 0.008 0.007 0.007 0.009 0.010 0.009 0.008 0.008 0.011 0.008

ΣP(3,3) 0.089 0.089 0.090 0.097 0.089 0.097 0.102 0.100 0.119 0.103 0.118

0.009 0.008 0.007 0.006 0.009 0.015 0.016 0.013 0.016 0.017 0.005

Σy(1,1) 0.045 0.049 0.051 0.027 0.044 0.060 0.071 0.067 0.035 0.065 2.3E-06

0.021 0.019 0.018 0.016 0.020 0.023 0.022 0.019 0.021 0.025 8.6E-07

Σy(2,2) 0.060 0.064 0.070 0.091 0.060 0.067 0.075 0.078 0.110 0.071 0.111

0.006 0.005 0.005 0.005 0.006 0.010 0.011 0.010 0.014 0.011 0.005

Σy(3,3) 0.027 0.029 0.031 0.034 0.027 0.028 0.031 0.032 0.039 0.030 0.025

0.005 0.004 0.004 0.005 0.005 0.006 0.006 0.005 0.007 0.007 0.005

Σy(4,4) 0.029 0.030 0.032 0.041 0.029 0.028 0.031 0.031 0.043 0.030 0.057

0.004 0.003 0.003 0.004 0.004 0.005 0.005 0.005 0.006 0.006 0.003

Σy(5,5) 0.027 0.029 0.032 0.044 0.027 0.028 0.032 0.033 0.045 0.030 0.068

0.003 0.003 0.003 0.003 0.003 0.005 0.005 0.005 0.006 0.005 0.004

Σy(6,6) 0.037 0.039 0.041 0.050 0.037 0.038 0.041 0.042 0.055 0.040 0.055

0.004 0.004 0.004 0.005 0.005 0.007 0.007 0.006 0.007 0.007 0.005

Σy(7,7) 0.052 0.055 0.059 0.085 0.052 0.058 0.065 0.067 0.106 0.062 0.107

0.006 0.005 0.005 0.006 0.006 0.010 0.010 0.009 0.014 0.010 0.006

Estimates of the structural coefficients of the model.  The entries are posterior means and standard deviations 

(the figures in smaller size) computed from the MCMC output, except for the last column, where estimates are 

obtained via maximum likelihood as in JSZ.  

 
 

 

 

 

 



Table 3. Evaluation of Point Forecasts. Sample 1995:2007

Maturity→ 0.25-yrs 1-yrs 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

step-ahead ↓

RW point forecasting performance

1 20.80 23.34 27.30 29.02 28.75 27.44 26.32

2 33.71 36.73 42.08 43.66 42.61 40.49 38.31

3 45.22 48.67 53.26 53.52 51.17 48.04 44.67

6 77.98 79.20 80.21 77.21 72.45 66.48 60.29

12 135.78 132.78 122.24 111.25 97.55 86.92 77.52

JSZ-VAR vs Random Walk

1 0.86 *** 0.97 1.03 1.01 1.02 1.03 1.00

2 0.80 ** 0.95 1.03 1.03 1.03 1.03 0.99

3 0.78 ** 0.92 1.01 1.01 1.02 1.02 0.98

6 0.78 * 0.90 0.96 0.96 0.96 0.96 0.93

12 0.80 0.85 0.86 0.86 0.86 * 0.88 0.86 *

JSZ-VAR-CSV vs Random Walk

1 0.85 *** 0.95 1.02 1.00 1.01 1.02 1.00

2 0.79 ** 0.93 1.03 1.02 1.02 1.03 1.00

3 0.77 ** 0.91 1.01 1.01 1.02 1.02 1.00

6 0.78 * 0.91 0.98 0.99 1.00 1.01 0.99

12 0.81 * 0.88 0.91 0.91 0.92 0.94 0.95

BVAR-CSV vs Random Walk

1 0.93 *** 0.98 1.00 1.01 1.01 1.01 1.01

2 0.92 *** 0.99 1.02 1.02 1.02 1.02 1.02

3 0.92 *** 0.99 1.03 1.03 1.03 1.02 1.02

6 0.95 * 1.02 1.06 1.06 1.06 1.04 1.03

12 0.95 1.01 1.06 1.08 1.09 1.08 1.05

The first panel contains the RMSFEs obtained by using the random walk forecasts, with units in basis points. The 

remaining panels display the relative RMSFEs of the competing models relative to the random walk. A figure below 

1 in the relative RMSFEs signals that a model is outperforming the random walk benchmark. Figures in bold 

denote that the best model (within the VAR class) for each variable and forecast horizon. Gains in accuracy that 

are statistically different from zero are denoted by *,**,***, corresponding to significance levels of 10%,  5% and 

1% respectively, evaluated using the Diebold and Mariano (1995) t-statistics computed with a serial correlation-

robust variance, using a rectangular kernel, h-1 lags, and the small-sample adjustment of Harvey, Leybourne, and 

Newbold (1997). 

 



Table 4. Evaluation of Density Forecasts. Sample 1995:2007

Maturity→ 0.25-yrs 1-yrs 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

step-ahead ↓

RW density forecasting performance

1 -4.54 -4.66 -4.78 -4.82 -4.81 -4.77 -4.72

2 -4.96 -5.06 -5.17 -5.21 -5.19 -5.15 -5.10

3 -5.26 -5.34 -5.41 -5.41 -5.38 -5.33 -5.26

6 -5.86 -5.81 -5.81 -5.77 -5.73 -5.66 -5.58

12 -7.34 -6.42 -6.24 -6.14 -6.05 -5.97 -5.89

JSZ-VAR vs Random Walk

1 0.13 *** 0.05 ** 0.00 0.00 0.00 -0.02 -0.02

2 0.16 ** 0.03 -0.04 -0.04 -0.03 -0.03 0.00

3 0.20 * 0.06 -0.02 -0.03 -0.01 -0.02 0.01

6 0.28 0.08 0.03 0.02 0.04 0.02 0.03

12 1.19 0.23 0.10 0.09 0.10 * 0.08 * 0.07 *

JSZ-VAR-CSV vs Random Walk

1 0.30 *** 0.16 *** 0.04 0.03 0.01 0.01 0.01

2 0.29 *** 0.11 ** 0.00 -0.01 -0.02 -0.03 -0.01

3 0.31 *** 0.13 ** 0.01 0.01 0.01 -0.01 0.00

6 0.37 * 0.15 * 0.07 0.05 0.06 0.04 0.04

12 1.26 0.29 0.12 * 0.09 0.09 * 0.08 * 0.07 *

BVAR-CSV vs Random Walk

1 0.19 *** 0.12 *** 0.04 0.02 0.00 0.01 -0.01

2 0.16 *** 0.07 ** 0.00 -0.02 -0.02 -0.01 -0.01

3 0.14 *** 0.07 * -0.02 -0.03 -0.01 -0.01 -0.01

6 0.12 0.04 0.00 -0.02 0.01 0.01 0.01

12 1.02 0.14 0.00 -0.03 -0.02 0.00 0.02

The first panel contains the average SCOREs obtained by using the random walk forecasts. The remaining panels 

display the differences in SCOREs of the competing models relative to the random walk. A figure above 0 in the 

SCORE differences signals that a model is outperforming the random walk benchmark. As the SCOREs are 

measured in logs, a score difference of e.g. 0.05 signals a 5% gain in terms of density forecast accuracy. Figures in 

bold denote that the best model (within the VAR class) for each variable and forecast horizon. Gains in accuracy 

that are statistically different from zero are denoted by *,**,***, corresponding to significance levels of 10%,  5% 

and 1% respectively, evaluated using the Amisano and Giacomini (2007) t-statistics computed with a serial 

correlation-robust variance, using a rectangular kernel, h-1 lags, and the small-sample adjustment of Harvey, 

Leybourne, and Newbold (1997). 



Table 5: JSZ-VAR vs GATSM

Maturity→ 0.25-yrs 1-yrs 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

step-

ahead ↓

Relative RMSFE (point forecasting performance)

1 0.95 0.87** 0.97 1.01 0.98 0.97 0.93**

2 0.92 0.89 0.98 1.01 0.98 0.98 0.95

3 0.88 0.86* 0.94 0.97 0.94 0.93 0.90*

6 0.85 0.84* 0.88 0.90 0.87 0.86 0.81**

12 0.83 0.81* 0.81* 0.80* 0.77* 0.77* 0.72**

Average Difference in SCORE (density forecasting performance) ***

1 0.640 0.581 0.500 0.493 0.528 0.549 0.602

2 0.588 0.499 0.387 0.385 0.440 0.485 0.553

3 0.536 0.459 0.388 0.404 0.471 0.515 0.596

6 0.408 0.395 0.385 0.422 0.485 0.530 0.603

12 0.245 0.285 0.338 0.405 0.494 0.536 0.592

*** All differences in density forecasts are significant at the 1% level

 

The first panel contains the relative RMSFE between the JSZ-VAR and the GATSM exactly imposed. The second 

panel contains the average difference in SCORE. Gains in accuracy that are statistically different from zero are 

denoted by *,**,***, corresponding to significance levels of 10%,  5% and 1% respectively, evaluated using the 

Diebold and Mariano (2005) t-statistics computed with a serial correlation-robust variance, using a rectangular 

kernel, h-1 lags, and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997). For density 

forecasts all differences are statistically significant at the 1% level according to the Amisano and Giacomini (2007) 

t-statistics computed with a serial correlation-robust variance, using a rectangular kernel, h-1 lags, and the small-

sample adjustment of Harvey, Leybourne, and Newbold (1997). 

 

 



Table 6: JSZ-VAR-CSV vs VAR-CSV with factor structure only

Maturity→ 0.25-yrs 1-yrs 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

step-

ahead ↓

Relative RMSFE (point forecasting performance)

1 1.00 0.99 1.00 1.00 0.99 1.00 1.00

2 1.00 1.00 0.99 0.99 0.99 1.00 1.00

3 0.99 0.99 0.99 0.99 0.99 1.00 1.00

6 0.99 0.99 0.99 0.99 0.99 1.00 1.00

12 0.99 1.00 0.99 0.99 0.99 1.00 1.00

Average Difference in SCORE (density forecasting performance)

1 0.0664* 0.0166** 0.007 0.005 0.005 0.003 0.009

2 0.0233* 0.007 0.011 0.012 0.005 0.002 0.001

3 0.017 0.003 0.007 0.012 0.013 0.008 0.004

6 0.024 0.007 0.004 0.003 0.001 0.000 0.004

12 0.031 0.0247* 0.022 0.013 0.012 0.009 0.010

 

The first panel contains the relative RMSFE between the JSZ-VAR-CSV and the same model where the no-arbitrage 

restrictions on the loadings have not been imposed. The second panel contains the average difference in SCORE. 

Gains in accuracy that are statistically different from zero are denoted by *,**,***, corresponding to significance 

levels of 10%,  5% and 1% respectively, evaluated using either the Diebold and Mariano (2005) or the the Amisano 

and Giacomini (2007) t-statistics computed with a serial correlation-robust variance, using a rectangular kernel, h-

1 lags, and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997). 

 

 




