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Quantifying the Effects of Online Bullishness on
International Financial Markets
by Huina Mao, Scott Counts, and Johan Bollen

Simple Classification (Positive of Negative) of Twitter feeds & Google
search queries.
Twitter Bullishness predict daily returns one-day-ahead.

One standard deviation increase in Twitter Bullishness -> 12.56 bps
higher return.
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Quantifying the Effects of Online...

Sentiment Measures: Classifier or Dictionary-based.
Classifier: Algorithms..
Dictionary: Negative words from Harvard psychosocial dictionary.

“many words that are classified as negative [in a psychosocial sense] are
not negative in a financial context”.

Here: “Bullish” “Bull Market” or “Bearish”/”Bear Market”
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Quantifying the Effects of Online...

Regression

Rt = α+
5∑

i=1

βiRt−i +
5∑

i=1

χiTB
t−i +

5∑
i=1

δiVolt−i + φExogt + εt

Exogt includes VIX, Daily Sentiment Index, Calendar Dummies.
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Discussion: Quantifying the Effects of Online...

Can you predict risk adjusted returns?

E.g. What is the resulting Sharpe ratio?

rt
σt

What if TB
t is correlated with volatility.

What if TB
t is correlated with the variables in Exogt? Monday?

Do the results hold Out-of-Sample?
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Investor Attention and FX Market Volatility
by J. Goddard, A. Kita, Q. Wang

Search Volume Index (SVI) for Currency pairs. E.g. USD/EUR.
Predicts

Trading Volume
Volatility
Variance Risk Premium

Discuss how findings relate to various theories.
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Investor Attention and FX Market Volatility

Contemporaneous correlation.

Volatilityt = λ0 + λ1SVIt + λ2Volatilityt−1

What if Volatilityt -> SVIt?
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Investor Attention and FX Market Volatility

VAR(2)

SVIt = β0 + β1Volt−1 + β2Volt−1 + β3SVIt−1 + β4SVIt−2 + η1t

Volt = λ0 + λ1SVIt−1 + λ2SVIt−2 + λ3Volt−1 + λ4Volt−1 + η2t
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Investor Attention and FX Market Volatility

Volatility from GARCH(1,1)

σ2
t = ω + βσ2

t−1 + αr2
t−1

GARCH is “slow”. Responds slowly to big changes in volatility.

Estimation unreliable if T < 1000.
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GARCH is Slow
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GARCH-X with a Realized Measure is Fast
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Investor Attention and FX Market Volatility

Extended GARCH

σ2
t = exp(λ0 + λ1SVIt) + γσ2

t−1 + · · ·

problematic because σ2
t is no longer Ft−1-measurable.

Realized GARCH
σ2

t = ω + βσ2
t−1 + γxt−1,

xt is realized measure of volatility computed from high-frequency data.
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General Remarks

Twitter & SVI in relation to equity market....
Dynamic association with an evolutionary component.
Conditional one-period-ahead models. SVI etc. taken as exogenous
predictor.
Not a complete model. There will be a need to model these variables.
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