
Networks of Common Asset Holdings: Aggregation and

Measures of Vulnerability ∗

Anton Braverman†and Andreea Minca‡

January 18, 2014

Abstract

This paper quantifies the interrelations induced by common asset holdings among

financial institutions. A network representation emerges, where nodes represent port-

folios and edge weights aggregate the common asset holdings and the liquidity of these

holdings. As a building block, we introduce a simple model of order imbalance that

estimates price impacts due to liquidity shocks. In our model, asset prices are set by a

competitive risk-neutral market maker and the arrival rates for the buyers and sellers

depend on the common asset holdings. We illustrate the relevance of our aggrega-

tion method and the resulting network representation using data on mutual fund asset

holdings. We introduce three related measures of vulnerability in the network and

demonstrate a strong dependence between mutual fund returns and these measures.
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1 Introduction

It is by now generally accepted that common asset holdings mediate contagion among fi-

nancial institutions. The contagion mechanism works as follows: two institutions, A and B,

have the same asset as a part of their portfolio. Suddenly, A is forced to liquidate the asset

due to some exogenous shock. Liquidation has an impact on the common asset price, and

therefore on the value of institution B’s portfolio. The initial shock may be due to lever-

age targeting, see e.g. [Adrian and Shin, 2010, Greenwood et al., 2012]; to a bank run,

[Gorton and Metrick, 2012]; to large payables related to derivatives [Zawadowski, 2013,

Amini et al., 2013]; to investor flows [Coval and Stafford, 2007]. For all these reasons, com-

mon asset holdings create a de facto network that may transmit financial distress.

The first main contribution of this paper is a model-based weighted network represen-

tation for a system of interrelated institutions. The nodes represent the portfolios of these
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institutions. The edge weights capture the strength of interrelations due to common asset

holdings. On the theoretic side, the question we ask is: How can we quantify these links?.

The question of weight attribution is essentially a question of aggregation of the actual

portfolio holdings and the liquidity characteristics of the common assets. To see why

liquidity characteristics are crucial to the model, consider the following example of two

institutions whose portfolios each consist of 1000 units of a perfectly liquid stock, i.e, a

stock whose price does not change no matter how much of it is traded. Despite the fact

that these institutions have common assets, no institution can affect the other by trading

the perfectly liquid asset. In this case, the strength of the interrelation is zero. If, on the

other hand, the asset were illiquid, then the two funds would be very strongly related.

Portfolio holdings are directly measurable from the data. Estimating asset liquidity,

on the other hand, is in itself a challenging problem. The simplest way to incorporate

asset liquidity in networks of common asset holdings is using an exogenous price impact

function, usually assumed linear. In this case, Kyle’s lambda [Kyle, 1985] captures the

liquidity characteristics of the stock.

A building block of our network model is a model for asset liquidity that accounts for the

common asset holdings. Our approach is influenced by the market microstructure literature

that models temporary liquidity price impacts in relation to imbalances in the order flow.

In our model, we consider that the asset has a fundamental value, but, depending on the

prevailing supply and demand, it will trade at a discounted value due to a market clearing

condition imposed by a specialist. The key point in our construction is that the supply and

demand are endogenous. The supply (demand) is due to forced liquidations in the network

(or asset purchases in the network, for those institutions with positive liquidity shocks).

The most important implication of our proposed network representation is that institu-

tions’ vulnerabilities to their neighbors shocks can be quantified. The model predicts that

these vulnerabilities are negatively correlated with returns.

In the second part of the paper, we test this prediction using data on mutual funds.

The application of the network model to mutual funds requires us to specify the source

of the initial liquidity shock. As documented in [Coval and Stafford, 2007], investor flows

into (out of) mutual funds trigger expansion (reduction) of positions in assets; they refer

to this as flow-induced trading. Flow-induced trading occurs because mutual funds do not

hold large cash reserves, therefore they must liquidate assets to repay leaving investors or

expand positions when they receive inflows. In [Coval and Stafford, 2007], they also find

that flow-induced trading creates price pressure, which is precisely how one fund affects
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others in the network of common asset holdings.

We construct and compare three measures of vulnerability in the network of mutual

funds’ portfolios and demonstrate that these measures are correlated with funds’ returns.

The three measures of vulnerability can be described as follows. The first measure, the

vulnerability index V I is a baseline measure. It is generated, for each mutual fund, by

summing up all its exposures through common asset holdings to the other mutual funds,

all renormalized by the size of the mutual fund. This can be interpreted as the aggregate

effect of the network on the mutual fund, under the condition of uniform liquidity shocks

across all funds. We find that this measure, while not making any specific assumptions on

the extent of the initial liquidity shock, predicts mutual fund returns following market-wide

events such as the equity market crashes in 2008 and 2011. Moreover, steady increases in

the average vulnerability index across network are shown to precede significant drops in

the total net assets of mutual funds. We also find that average vulnerability is exacerbated

during periods of crises, and this is mainly a liquidity effect and not due to increased

portfolio similarity.

The second measure, the flow-adjusted vulnerability measure FAV , removes the as-

sumption of uniform liquidity shocks across all funds, and defines a mutual-fund specific

liquidity shock induced by fund flows. In both the first and second measures, the liquidity

characteristics of each stock are captured using a stock specific linear price impact function.

The third measure, FAV ∗ is a refinement of the flow-adjusted vulnerability measure.

It relaxes the linearity assumption on the price impact. The order imbalance is endogenous

and depends on the common asset holdings and the fund flows.

The two flow-adjusted vulnerability measures FAV and FAV ∗ complement the baseline

measure. They do not predict returns, since they use concurrent fund flows as triggers of

the initial liquidity shocks in the network of common asset holdings. Contrary to the

baseline measure, these flow-adjusted vulnerability measures are applicable at all times

and not just during times of market-wide events.

These measures are positively correlated with fund returns throughout all our sample

period. Their explanatory power is maintained after controlling for the concurrent fund

flows. When applied to the data, we find that the measure FAV ∗, in which the price

impact is endogenous, outperforms the measure FAV , which is no longer significant in a

horse race.
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1.1 Relation to the previous literature

Capturing interrelations amount financial institutions is a problem that has been stud-

ied recently by [Blocher, 2013], who consider common asset holdings by mutual funds,

[Greenwood et al., 2012, Caccioli et al., 2012], who consider common asset holdings by

banks and [Caccioli et al., 2013], who consider the interplay between contagion in the net-

work of common asset holdings and contagion in the network of interbank loans.

The papers closest to ours are [Blocher, 2013] and [Lou, 2012]. In [Blocher, 2013], the

author constructs a network of mutual funds and assigns edge weights between two funds

based on the similarity of the investing strategies of each fund. He then uses this network

to partially explain future returns and fund flows. His focus is on demonstrating the impact

of second order network neighbors on future returns. He considers the portfolio liquidity

estimates based on [Amihud, 2002] as separate factors driving future returns. In particular,

in his model, the network representation and the aggregate liquidity of the portfolios are

entirely separated. The study in [Blocher, 2013] is based on [Cohen et al., 2005] and uses

the same similarity measure to explain future returns.

Although he does not explicitly use a network representation, [Lou, 2012] considers how

flow-induced trading affects stock return predictability. He then aggregates these affects

among all stocks belonging to a portfolio to give a measure that predicts portfolio returns.

He incorporates the individual stock liquidity by using the total number of shares held by

mutual funds. This measure of stock liquidity is motivated by [Gompers and Metrick, 2001]

who show that mutual funds’ holdings are skewed toward liquid stocks. Unlike [Lou, 2012],

our focus in the current study is not return predictability per se, but to demonstrate that

vulnerability in networks of common asset holdings can be measured and that the resulting

measures can explain returns.

In their study on bank holdings, [Greenwood et al., 2012] incorporate individual stock

liquidity by including a market depth parameter for each stock, which measures the price

impact of trading the stock. However, this parameter is later assumed to be identical for all

stocks, making the individual stock characteristics irrelevant to the overall network effect.

On the theoretical side, [Caccioli et al., 2012] use a branching process to model default

contagion in a network of banks and their underlying dependence structure is also based

on common asset holdings and the price impact of asset liquidations. They assume that

each asset reacts to trading according to some exogenous market impact function of the

trade size.
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In general, our paper is part of the growing literature on financial networks1. For

reviews see, e.g. [Babus and Allen, 2009, Amini and Minca, 2013]. Importantly, most of

the literature on financial networks interprets the interrelations as contractual liabilities of

various maturities. Contrary to networks of liabilities, the links in networks of common

asset holdings are not readily specified as quantities available on balance sheets. The ability

to quantify these links is a keystone to understanding the systemic risk due to common

asset holdings.

Our network construction has some important side implications for asset pricing. In our

model, no exogenous parameters such as asset correlations are required and the network of

common asset holdings can be thought of as a partial dependence structure among portfolio

returns. Of course, the network of common asset holdings can also be seen as a dependence

structure among the stock returns themselves, and may explain endogenous correlation aris-

ing from institutional ownership, see the theoretical model in [Cont and Wagalath, 2013].

In this sense, the correlation of fund returns with the second measure provides empirical

support for this theory. A more direct verification, using historically uncorrelated stocks

and institutional ownership data, is provided in [Gao et al., 2012].

The rest of the paper is structured as follows: Section 2 introduces the network repre-

sentation, Section 3 describes the data on mutual fund holdings, Section 4 introduces the

three measures of vulnerability and tests the dependence of these measures and the mutual

fund returns and Section 5 concludes.

2 Model

In this section we discuss a network model for a cross-section of common asset holdings by

financial institutions (banks, mutual funds, etc.). First we introduce the notation. Since

each institution is allowed to have only one portfolio, we will use the term portfolio to refer

to one institution in our network.

Consider the case where N = {1, . . . , N} is a set of portfolios and K = {1, . . . ,K} is

a set of stocks. Each portfolio owns a subset of K, and two portfolios may have common

holdings.

1See e.g. [Allen and Gale, 2000, Amini et al., 2011, Acemoglu et al., 2013, Allen et al., 2010,
Blume et al., 2011, Cabrales et al., 2013, Cohen-Cole et al., 2011, Demange, 2012,
Eisenberg and Noe, 2001, Elliott et al., 2012, Gai and Kapadia, 2010, Glasserman and Young, 2013,
Gourieroux et al., 2012, Rochet and Tirole, 1996, Rogers and Veraart, 2013, Staum, 2012].
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Let S = (s1, . . . , sK) be the vector of stock prices.

We denote the holdings of each portfolio by the matrix

B = [βki] i ∈ N, k ∈ K,

where βki represents the number of shares of stock k owned by portfolio i.

The value of portfolio i can be written as

Pi =
K∑
k=1

βkisk = βi · S, where βi = (β1i, . . . , βKi).

Denote the vector of portfolio values by P = (P1, . . . , PK).

We can represent the interrelations of financial institutions through common asset holdings

as a network whose nodes correspond to the portfolios. There is an edge between two nodes

if the corresponding portfolios hold common assets. In order to capture the extent of the

relationship between two portfolios, we introduce edge weights. It is intuitive to want two

portfolios with large asset commonality to have a strong relationship and portfolios with

little asset commonality to have a weak relationship. We therefore define the weight of

an edge between two portfolios by answering the following question: what effect will the

liquidation of fund i have on fund j?

2.1 Edge weights under linear price impact

In order to define the edge weights, we must incorporate the price impact of trading2. To

capture this effect, we define the function PIk(x) to be the (relative) change in the price

of stock k due to x shares of this stock being traded.

In the baseline model, we make the simplifying assumption that the price impact func-

2In our model, we consider that trading is uninformed and the price impact is exclusively due to fund
liquidations.
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tion is linear and of the form:

PIk(x) =
x

λk
, (1)

where λk is such that buying/selling λk
100 stocks will move the price of the asset up/down

by 1%. The parameter λk captures the market depth of stock k, see the seminal paper

[Kyle, 1985]. In Section 4.3, we will develop a substitute for the linear price impact based

on a model of a market in which arrival rates for the buyers and sellers depend on the

common of asset holdings and prices are set by a competitive, risk-neutral market maker.

In order for the price impact to take into account the different characteristics of each stock,

we scale it by the average daily volume traded and multiply it by the stock’s volatility as

in [Almgren et al., 2005, Amihud, 2002]

λk =
1

λ̃

ADPk
σk

,

where ADPk is the average daily volume of trades, σk is the daily returns standard deviation

of stock k and λ̃ is an invariant across stocks [Kyle and Obizhaeva, 2011]. Our results

however will not depend on the proportionality constant λ̃.

We are now ready to define our edge weights. When portfolio i liquidates its shares

of asset k, the price of the asset sk drops by βki
λk
sk. This causes portfolio j’s value to

decrease by βkj
βki
λk
sk. Hence, the total loss experienced by j if portfolio i liquidates can be

calculated by summing this quantity across all assets

wij =

K∑
k=1

βki
λk
βkjsk. (2)

Observe that wij = wji (symmetric) and wij = 0 if and only if i and j have no assets in

common. Thus we set the weight of the edge connecting i and j to be wij .

The first two measures of vulnerability in the network of common asset holdings use

directly the links specified above. Our third measure of vulnerability is based on the model

introduced in the next section for the impact of order imbalance on a stock’s price.
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2.2 Order flow imbalance and price impact

In the previous section, we assumed that the change in the price of an asset was proportional

to the net supply/demand, with the market depth being the constant term in this linear

relationship. In this section we drop this assumption, and propose a simple model to

determine how imbalances in supply and demand of an asset affect its price.

Suppose we have a single asset with constant fundamental value p, which is traded con-

tinuously by a specialist at a single price p̂. Trading occurs during times t ∈ [0, T ] and the

price p̂ is chosen by the specialist at time t = 0 and remains constant over time. We assume

that buyers and sellers arrive to the market according to independent, time-homogeneous

Poisson Processes with rates rB(p̂) and rS(p̂), both dependent on p̂. We assume that as p̂

decreases, rB(p̂) increases and rS(p̂) decreases. Intuitively, this relationship means that as

the price decreases, more people are willing to buy and less people are willing to sell.

We assume that the specialist knows these arrival rates. This is a reasonable assumption

since the specialist sees all order flow and can therefore estimate these rates. We assume

that the specialist has deep pockets i.e. that the specialist’s risk of running out of inventory

or capital during the trading period [0, T ] is negligible. In reality, a specialist will set a

price spread as compensation for the liquidity risk he bears; however, in this simplified

model the specialist must trade at a single price. Since trading occurs at a single price,

the specialist does not earn any trading profits. We therefore assume that the specialist

will choose p̂ to be a market clearing price. By this we mean that its the price that sets at

zero the expected order imbalance during the trading period.

To quantify this condition, we note that the expected number of buyers that arrive by

time T is given by rB(p̂)T and similarly, the expected number of sellers that arrive by time

T is given by rB(p̂)T . The goal of the risk neutral specialist is therefore to choose p̂ such

that its expected trade imbalance is zero

(rB(p̂)− rS(p̂))T = 0. (3)

Its clear that the specialist will thus choose p̂ so that rB(p̂) = rS(p̂). We can rewrite

p̂ as p̂ = p × d, where d can be thought of as a price discount applied by the specialist to

attract more buyers and deter sellers, or vice versa (in the case when d > 1 its a premium,

but we will still refer to it as a discount). We can also rewrite the arrival rates in the

following form
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rB(p̂) = rB(d) = φB(d)×NB (4)

rS(p̂) = rS(d) = φS(d)×NS , (5)

where NB and NS can be interpreted as the total number of potential buyers and sellers

on the market, respectively; The quantities φB(d) and φS(d) are the fraction of the buyers

and sellers that the specialist attracts with his choice of discount. The assumption that

lower prices (larger discount) will attract buyers and deter sellers is captured by requiring

that as d decreases, φB(d) will increase and φS(d) will decrease.

Condition (3) can now be written as

NB

NS
=
φS(d)

φB(d)
= φ(d), (6)

where φ(d) is now a monotone increasing function in d. Applying φ−1 to both sides,

we get

d = φ−1(
NB

NS
) = f(

NB

NS
). (7)

Thus the discount can be written as an increasing function of the ratio (f = φ−1 is

guaranteed to be increasing since φ is). If we had some information about the number of

buyers and sellers in the market (NB and NS) and the behavior of f prior to the start of

trading, we could estimate the effect this would have on the price. In the empirical section

of the paper, this is precisely our goal. By imposing a power law on f and estimating NB

and NS from expected mutual fund order flows, we will show that this model allows us to

explain mutual fund returns due to these price discounts.

3 Data

We use quarterly mutual fund holdings data from the CRSP Mutual Fund database ranging

from 01/2003 - 12/2012. The mutual fund database does not suffer from survivorship bias.

We only use equity funds (funds with Lipper Asset Code ‘EQ’) or funds that have at least

50% of their holdings composed of common stock. We focus on U.S. funds by excluding

funds with Lipper Objective Code ‘GL’ or ‘IF’ (global or international fund) and exclude

any funds with ‘global’, ‘international’, ‘europe’ or ‘emerging’ in their names. We exclude
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any funds with a missing total net assets (TNA) value or missing an associated portfolio

number.

We calculate monthly portfolio TNA and returns data by aggregating fund data across

share classes by using share class TNA as weights, and exclude any portfolios whose total

net assets are under 1 million USD. We filter out any holdings that are not long positions

in common stock. This is done by excluding any holdings with a coupon rate or maturity

date and anything whose share class is not 10 or 11 (representing common stock). The

number of shares owned by the portfolio has to be positive, and the market value of the

holding has to be non-zero.

Although holdings for most portfolios are reported at the end of each quarter, some

portfolios report their holdings before the end of the quarter. To deal with the latter

category of portfolios, we assume that their positions do not change from the reported

date until the end of the quarter and combine these reported positions along with asset

prices from the end of the quarter to construct the portfolio holdings. The database is

missing holdings information for many portfolios in Q3 2010, therefore we do not use that

quarter’s holdings in our empirical work. Summary statistics can be found in Table 3.

Fund flows are calculated using the formula

Flowt =
TNAt − (1 + rt)TNAt−1

TNAt−1
, (8)

where TNAt is the total net assets of a portfolio in period t and rt is the return of the

portfolio in period t.

To calculate stock market depths (λk = ADPk

λ̃×σk
), we use daily stock data from the

CRSP US Stock Database. Stock average daily trading volumes and daily returns standard

deviations are calculated for each quarter based on that quarter’s volume and returns alone

(i.e. not using volumes and returns from previous quarters). The exact value of λ̃ plays no

role in our data analysis because we will use regression models and results will not depend

on this exact value. Therefore, for the purpose of computing λk, we set λ̃ = 1.
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4 Three measures of vulnerability

4.1 The baseline vulnerability measure

During periods of mass asset liquidations (purchases), a portfolio may be subject to losses

(gains) due to the trading activity of its neighbors.3 These losses (gains) are not uniform

for each portfolio and will be more extreme for portfolios with more neighbors. In order to

measure this endogenous impact on portfolio i’s value, we define the portfolio vulnerability

measure

V Ii =
1

Pi

N∑
j=1
j 6=i

wji. (9)

This measure corresponds to the first order effects on node i’s loss, imposed by its neighbors.

To intuitively understand this measure, εV Ii the fraction by which portfolio i’s value will

decrease (increase) if all its neighbors liquidate (expand) their portfolios by a factor of ε.

The measure V Ii is similar to the vulnerability measure proposed by [Greenwood et al., 2012]

in their study of banking networks with common asset holdings. The difference is that in

their case, banks adjust portfolios to satisfy a constant leverage constraint, whereas in

the case of mutual funds, portfolio adjustment is triggered by investor flow. Essentially,

these measures are natural measures of a node’s vulnerability in the network. In a study

of general complex weighted networks, [Barrat et al., 2004] discuss a quantity called the

vertex strength, defined as the sum of weights of all edges adjacent to a vertex i, which in

our mutual fund network is
∑N

j=1
j 6=i

wji. To obtain V Ii, we simply scale the vertex strength

by the value of the portfolio Pi – the total net assets of the portfolio – to account for the

scale effect.

To illustrate the use of this first vulnerability measure, consider the following. As a

result of significant market events, mutual funds can be faced with mass outflows (inflows)

of investors. As documented by [Coval and Stafford, 2007], an outflow (inflow) experienced

by a fund will cause the fund to liquidate (expand) its asset positions. The flow-induced

liquidations (expansions) of asset positions will cause funds that were not affected by the

original market events to experience losses (gains) due to their neighbors’ actions.

Indeed, this is what happened when the banking sector was hit by massive losses during

the financial crisis of 2007/2008. Portfolio managers with banking sector assets modified

3Two nodes that are connected in the network are referred to as neighbors.
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their portfolio holdings; in particular, they liquidated assets not belonging to the banking

sector to pay leaving investors and in turn, they had an impact on the prices of these

assets.4 Thus, even portfolios with no financial stock holdings still lost money due to the

endogenous losses propagating from the initial banking sector shock. If i and j were two

such portfolios and V Ii < V Ij , we would expect portfolio j to incur a higher loss than i,

because it would have been a more vulnerable node in the network (and thus would have

been more likely to have been impacted by a neighbor’s liquidations). We formalize this

idea by introducing the following hypothesis:

Hypothesis: Portfolios with a higher vulnerability have lower returns in periods of mass

liquidations.

In order to test this hypothesis, we examine mutual fund data obtained from the CRSP

database.

4.1.1 Vulnerability measure and future returns

The most significant drops in cumulative TNA occured in Q4 2008, shortly after the collapse

of the Lehman Brothers, and Q3 2011 during which S&P downgraded the U.S. credit rating.

Both quarters experienced crashes in various market indices (Dow Jones, S&P 500). Using

holdings data from the end of Q3 2008 and Q2 2011, we calculate portfolio vulnerabilities

and then regress portfolio returns for the following quarters of Q4 2008 and Q3 2011 against

those vulnerabilities. Table 1 displays the regression results and Figures 1 and 2 show plots

of returns vs. vulnerability along with the fitted regression lines. Both quarters show a

significant negative relationship between vulnerability and future returns.

We point out that these quarters were chosen due to the extreme events that occurred

in them. In many other quarters, the vulnerability measure failed to display any significant

relationship with future returns. This is because the vulnerability measure is only useful

conditional on a market wide event occurring that triggers mass liquidations.

4See [Hau and Lai, 2012].
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Figure 1: Portfolio returns for Q4 2008 plotted against portfolio vulnerability calculated
at the start of the quarter.

Figure 2: Portfolio returns for Q3 2011 plotted against portfolio vulnerability calculated
at the start of the quarter.

4.1.2 Portfolio vulnerabilities over time

We examine the average portfolio vulnerabilities as they evolve over our sample period of

2003-2012. Figure 3 plots the average vulnerability of portfolios alongside the cumulative

TNA of all portfolios. Two distinct spikes in portfolio vulnerability are visible in Q4 2008

and Q3-Q4 2011. These spikes coincide with the two largest troughs in the cumulative

total net assets (TNA) of portfolios, which occurred after the Lehman Brothers collapse in

September 2008 and the downgrading of the U.S. credit rating by S&P in Q3 2011.
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Table 1: Fund returns during quarter t regressed against fund vulnerability at the start of
the quarter.

2008Q4 2011Q3

Constant -0.2117∗∗∗ -0.1239∗∗∗

(-58.56) (-47.26)
V It -0.0270∗∗∗ -0.0801∗∗∗

(-7.14) (-20.57)

Adj. R2 0.0179 0.1012
Observations 2748 3749

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note that the average portfolio vulnerability was relatively stable before Q1 2007 and

then steadily increased after Q2 2007 up to Q4 2008 (with the sharpest increase after the

fall of Lehman Brothers, in Q4 2008). The cumulative TNA started to drop only after Q2

2008. This suggests that increases in average vulnerability precede significant drops in total

net assets.

Moreover, from the spikes in average vulnerability, we note that portfolio vulnerabilities

exacerbate their increase in response to financial distress. According to our model, there

are two factors that can cause this sudden increase in vulnerabilities; portfolios can increase

their exposure to other portfolios if everybody starts buying similar assets, or vulnerabilities

Figure 3: Average portfolio vulnerability V I plotted alongside the cumulative TNA of all
portfolios. Data for 09/2010 is missing.
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may increase if the market depths of stocks fall.

To examine the possibility that portfolios may be purchasing similar assets in response

to financial distress, we look at stock ownership distributions. Each quarter, for every

stock held by portfolios in our sample, we calculate the percentage of portfolios that own

that stock (stock ownership). Then we use this data to estimate the distribution, across

stocks, of stock ownership. We then calculate the 5% quantile of this distribution (our

choice of 5% was based on observing the distributions, choosing a different threshold will

not significantly affect our conclusions). This quantile gives the percentage of stocks held

by more than 5% of all portfolios. Heavier tails can occur due to increased commonality

between portfolio assets, or simply because the number of portfolios is increasing.

Figure 4 displays the quantiles of the distribution, across stocks, of stock ownership

along with the number of portfolios in our sample over time. Although the quantiles

increase over time, our sample size does as well. A plot of the quantiles against the sample

size in Figure 5 reveals a very strong linear relationship between the two. Both figures

suggest that the heavier tails are simply a result of more funds entering the market and

not due to increases in portfolio asset commonality. The portfolio vulnerability spikes are

therefore attributed to plunges in the market depth of stocks.

Figure 4: Time series of the 5% quantile of the distribution of stock ownership and the
number of portfolios used in the sample. Data for 09/2010 and 12/2012 is missing.
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Figure 5: Stock ownership tail probabilities against the sample size. A clear linear rela-
tionship is evident. Data for 09/2010 and 12/2012 is missing.

To summarize, we find that portfolio vulnerabilities spiked significantly during the

periods of mass financial distress in the late quarters of 2008 and 2011. These spikes were

not caused by increased asset commonalities; rather, they were caused by decreases is

market depths suggesting liquidity shortages. During these periods, portfolios were much

more vulnerable to losses from widespread investor outflow.

4.2 Flow-adjusted vulnerability

In this section, we refine the vulnerability measure by incorporating fund-specific investor

flow. If a fund is expected to expand its existing asset positions, then its actions will benefit

its neighbors and this fund can be considered as a ‘good’ neighbor. Conversely, funds that

liquidate assets are ‘bad’ neighbors. The vulnerability measure is limited because it is a

simple measure of a portfolio’s centrality and does not distinguish between good and bad

neighbors. Thus, to be useful, it implicitly requires the same trading direction throughout

the whole network (i.e. everyone liquidates or everyone purchases), so that everyone is

either a good neighbor or a bad neighbor. Although this mass trading behavior is more

likely to occur during a financial crisis or a large boom in the market, most of the time

fund behavior is heterogeneous and V I is no longer as useful. The measures introduced

below addresses this limitation.

In the reminder of this section we assume that the price impact is linear, as in the

definition of the vulnerability measure.
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Given a network of funds at the start of a quarter, we set Fi to be the flow to be

experienced by fund i over this quarter. The fund’s flow-induced trading during this quarter

will then have an impact on asset prices. To capture the effect of a fund on its neighbors,

we impose two simplifying assumptions on the trading behavior of a fund:

1. No new assets are purchased as a result of inflows, existing positions are expanded

instead.

2. Proportional buying/selling: when a fund experiences an outflow Fi < 0, it

liquidates an equal fraction of each asset and when a fund experiences an inflow

Fi > 0, it expands its positions proportionally.

Our assumption of proportional buying/selling of assets is unlikely to hold in reality.

Indeed, [Hau and Lai, 2012] found that a fund experiencing outflows will raise money by

liquidating its best performing assets. Yet they find no evidence for an important interac-

tion among stock liquidity and holding reductions. In absence of such evidence, we prefer

to maintain proportional liquidation/expansion rules.

At the end of the quarter, the impact of portfolio j’s flow-induced trading on portfolio

i is

1

(1 + Fi)Pi

K∑
k=1

Fjβkj
λk

(1 + Fi)βkisk =
Fjwji
Pi

. (10)

This impact is now either positive or negative, all depending on the sign of Fj .

We now define the flow-adjusted vulnerability (FAV) measure for fund i as the

sum of the impacts of all its neighbors (including itself). It is the percentage change in

portfolio i’s value due to flow-induced trading

FAVi =
1

Pi

N∑
j=1

Fjwji. (11)

The FAV can be calculated using the portfolio holdings network at the start of each

quarter and the investor flows over that quarter. In section 4.4, we show that a portfolio’s

FAV is positively correlated with its returns over this quarter. Unlike the vulnerability

measure V I, the FAV can be used to explain returns at all times and not only in periods

of (near) uniform trading behavior. However, contrary to the V I, the FAV cannot predict

returns, as computing the FAV requires knowing the investor flow during a quarter ahead
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of time. Therefore, the FAV for a given quarter can only be computed at the end of the

quarter, once the flows (and returns) are already known.

Our measure is similar to the flow induced trading (FIT) measure proposed by [Lou, 2012].

The difference lies in the way stock liquidity is accounted for. The FIT uses the total

number of stocks owned by all funds as a measure of each stock’s liquidity, motivated by

[Gompers and Metrick, 2001] who show that mutual funds’ holdings are skewed toward

liquid stocks. We use information about a stock’s trading volume and volatility.

The main limitation of the FAV measure is that the price impact is linear. In the next

section, we address this shortcoming by refining the FAV using the model discussed in

Section 2.2.

4.3 Refining the flow-adjusted vulnerability measure

To replace the assumption of linear price impact for each stock, we shall use the model

from Section 2.2. In the model, a stock with fundamental value p is traded continuously

during some time period [0, T ] at a discounted price d × p. We let the time period [0, T ]

represent one quarter and we let the fundamental price be the price at the start of the

quarter. The price at the end of the quarter will therefore be the discounted price d × p.
We showed that the discount can be written as

d = f

(
NB

NS

)
, (12)

where f is an increasing function and NB and NS represent the total number of potential

buyers and sellers on the market.

We estimate NB and NS using the total number of stock bought and sold by all funds

during the quarter. According to our assumptions, the number of shares of a stock that

a single fund will trade is equal to its investor flow during the quarter multiplied by the

number of shares of that stock it owns. Therefore, for stock k, we set the estimators

N̂B,k =

N∑
i=1

βkiFi1{Fi>0}, (13)

N̂S,k =

N∑
i=1

βkiFi1{Fi<0}. (14)

This implies that the impact of trading (captured by d) is simply a function of the ratio
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of the order inflow to the order outflow.

Next, we need to impose some conditions on the form of f . In particular, we assume

that f is a power-law of the form

f(x) = xα. (15)

For the purposes of performing regression analysis, we set α = 1/3; however, our results

do not depend qualitatively on this particular choice of α.

We can now write the return of the stock at the end of a quarter as

returnk =
dk × sk − sk

sk
= dk − 1 = f

(
NB,k

NS,k

)
− 1 ≈

(
N̂B,k

N̂S,k

)1/3

− 1. (16)

By aggregating these returns across all stocks in a portfolio, we obtain the refinement

of the flow-adjusted vulnerability measure

FAV ∗i =
1

Pi

K∑
k=1

βkisk

(N̂B,k

N̂S,k

)1/3

− 1

.
This refined measure can be interpreted as a measure of vulnerability to order imbal-

ance.

Note that in the above measure the neighbors (in the network of asset holdings) do

not appear explicitly. The effects of their distress on a given portfolio are captured by

the price discount factor, which is driven by the imbalance of the supply and demand.

This measure directly aggregates the discount (weighted by the relative position) across

all stocks belonging to a portfolio to obtain the impact of trading on the value of an entire

portfolio. This can be viewed as a refinement of the FAV measure, because instead of using

a linear price impact function, we use the model we proposed in Section 2.2 to measure

how order flow will impact prices.

4.4 Explaining mutual fund performance

We compare the ability of both the FAV and FAV ∗ measures to explain mutual fund

returns. Table 2 displays the results of regressing a fund’s quarterly returns against the

FAV and FAV ∗ measures computed for the fund at the start of that quarter. As expected,

both measures are positively correlated with returns. Furthermore, we find that after
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accounting for the FAV ∗ measure, the FAV is no longer significant in explaining returns.

These results indicate that the FAV ∗ is indeed a refinement of the FAV , and suggest that

the ratio of order inflows to outflows may be a more suitable measure of price impact than

simply considering net order flow.

Computing the FAV and FAV ∗ measures for a quarter requires using fund flows for

that quarter, which are certainly expected to be correlated with the returns for the quar-

ter. Therefore, any relationship between the two vulnerability measures and fund returns

may occur simply because we used concurrent flows to compute the measure. The most

important point in the validity of the regressions is therefore introducing the concurrent

flows as control variables. Unsurprisingly, these are positively correlated with the returns

in the same quarter.

We find that the two measures of vulnerability maintain their explanatory power after

controlling for the concurrent flows.

5 Conclusion

In this paper we measure the interrelations due to common asset holdings. The aggregation

of asset holdings in a network structure depends on the model of distress propagation, i.e,

the sequence: the initial shock, the liquidations in response to the initial shock, the effect

of liquidations on other participants. We construct a model for the price impact of trading,

in which demand and supply depend on the asset holdings and fund flows.

The network representation is useful to derive measures of vulnerability of funds to

the shocks of their neighbors in the network. We find, using mutual fund data, that

the vulnerability index is useful in predicting returns in periods of mass liquidations. In

such periods, we can identify vulnerable funds based on asset holdings and the liquidity

characteristics of the stocks.

The flow-adjusted measure of vulnerability to order imbalance, based on our model

for the price impact of trading, is shown to be correlated with returns throughout all our

sample period, not only during periods of mass liquidations.

In this paper we focused on vulnerabilities. In the other direction, the common asset

holdings network is useful to identify systemic funds, i.e., funds that are likely to have

large network externalities on the the other funds. An important direction that emerges is

to understand how funds should optimally allocate their wealth in order to manage their
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Table 2: Fama-Macbeth regressions of future fund returns with Newey-West corrections
of four lags. The dependent variable is fund return over quarter t, the FAV ∗ and FAV
measures are computed using the asset holdings at the start of quarter t and the fund
flows over quarter t. We control for the log total net assets owned by a fund at the end of
the previous quarter, the log total number of shares owned by the fund at the end of the
previous quarter and the return of the fund in the previous quarter. We also control for
fund flows over quarter t to ensure that the explanatory power of the two measures is not
a simple consequence of the correlation of returns with concurrent flows. When computing
the values of FAV ∗ and FAV , we exclude funds whose inflows are greater than 100%.

(1) (2) (3)

FAV ∗t 0.0683∗∗∗ 0.0705∗∗∗

(4.85) (4.36)

FAVt 0.463∗∗∗ -0.00706
(4.38) (-0.08)

log(TNAt−1) 0.00101 0.000635 0.000623
(0.69) (0.41) (0.39)

log(Sharest−1) -0.000800 -0.000352 -0.000333
(-0.57) (-0.24) (-0.22)

flowt 0.0230∗∗∗ 0.0162∗∗ 0.0155∗∗

(4.55) (3.49) (3.34)

returnt−1 0.000742 -0.0233 -0.0251
(0.02) (-0.51) (-0.56)

Constant 0.0227 0.0205 0.0203
(1.48) (1.29) (1.23)

Sample Size 87257 87257 87257
R2 0.1746 0.2032 0.2105

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

vulnerability, in other words actively manage their exposure to systemic funds.
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Table 3: Sample Summary Statistics

Quarter Sample Size Avg. TNA
(Millions USD)

Avg. Returns

2003Q1 1055 775.3792 -.0325302
2003Q2 1193 1094.011 .1768667
2003Q3 1156 1069.552 .0521816
2003Q4 1262 1238.092 .1254271
2004Q1 1167 1326.15 .0349723
2004Q2 1333 1418.028 .0067969
2004Q3 1500 1406.52 -.0209161
2004Q4 1516 1480.049 .1113064
2005Q1 1485 1458.826 -.0249359
2005Q2 1550 1398.272 .0290094
2005Q3 1523 1366.415 .0536351
2005Q4 1344 1731.367 .0231874
2006Q1 1551 1637.891 .0721329
2006Q2 2055 1498.721 -.0326027
2006Q3 2070 1483.061 .0218679
2006Q4 2002 1677.887 .0698327
2007Q1 1984 1540.524 .0214222
2007Q2 2112 1742.315 .0601094
2007Q3 2106 1742.646 .0127245
2007Q4 1951 1839.342 -.0294899
2008Q1 2272 1487.684 -.0991061
2008Q2 2686 1423.524 .0008539
2008Q3 2748 1295.292 -.0974341
2008Q4 2770 893.3395 -.2363101
2009Q1 2672 916.3047 -.0921644
2009Q2 2695 1031.053 .1826194
2009Q3 2610 1254.235 .1685044
2009Q4 2678 1303.177 .0548776
2010Q1 2766 1324.033 .061102
2010Q2 1735 1299.265 -.1035419
2010Q4 3691 1243.006 .1204893
2011Q1 3739 1322.21 .0650316
2011Q2 3749 1321.992 -.0028043
2011Q3 3728 1082.982 -.1731857
2011Q4 3776 1184.425 .1146
2012Q1 3755 1329.697 .1281554
2012Q2 3760 1291.03 -.0450215
2012Q3 3512 1421.643 .0567436
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