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Abstract

This paper develops a method for producing current-quarter forecasts of GDP growth

with a (possibly large) range of available within-the-quarter monthly observations of

economic indicators, such as employment and industrial production, and financial in-

dicators, such as stock prices and interest rates. In light of existing evidence of time

variation in the variances of shocks to GDP, we consider versions of the model with

both constant variances and stochastic volatility. We use Bayesian methods to estimate

the model, in order to facilitate providing shrinkage on the (possibly large) set of model

parameters and conveniently generate predictive densities. We provide results on the

accuracy of nowcasts of real-time GDP growth in the U.S. from 1985 through 2011. In

terms of point forecasts, our proposal improves significantly on AR models and performs

comparably to survey forecasts. In addition, it provides reliable density forecasts, for

which the stochastic volatility specification is quite useful.
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1 Introduction

Nowcasting has come to be commonly viewed as an important and unique forecasting prob-

lem; see, e.g., Banbura, Giannone, and Reichlin (2011) and Banbura, Giannone, Modugno,

and Reichlin (2013). It is important because current-quarter forecasts of GDP growth and

inflation provide useful summaries of recent news on the economy and because these fore-

casts are commonly used as inputs to forecasting models, such as some of the DSGE models

in use at central banks, that are effective in medium-term forecasting but not necessarily

short-term forecasting. As studies such as Faust and Wright (2009, 2013) have emphasized,

initial-quarter forecasts often play a key role in the accuracy of forecasts at subsequent

horizons. Nowcasting is unique in that, to some degree, it involves “simply” adding up

information in data releases for the current quarter. A key challenge is dealing with the

differences in data release dates that cause the available information set to differ over points

in time within the quarter – what Wallis (1986) refers to as the “ragged edge”of data.

The nowcasting method we propose in this paper is motivated in part by three key find-

ings in the broader forecasting literature. First, prior work, particularly De Mol, Giannone,

and Reichlin (2008), Banbura, Giannone, and Reichlin (2010), and Carriero, Kapetanios,

and Marcellino (2011), has shown that, with large data sets, estimation with Bayesian

shrinkage is a viable alternative to factor model methods. Second, Clark (2011), Carriero,

Clark, and Marcellino (2012), and D’Agostino, Gambetti, and Giannone (2013) find it useful

for forecasting purposes to incorporate stochastic volatility into VAR models, for both point

and density forecasts. Third, some other prior work has shown that direct multi-step meth-

ods of forecasting can be at least as accurate as iterated methods (e.g., Marcellino, Stock

and Watson (2006)) for multi-step forecasting. At a forecast horizon of h > 1, the direct

approach rests on estimates of a model relating yt+h to information in period t. The iterated

approach involves a model relating yt+1 to information in period t and iterating forward to

obtain 2-step forecasts from 1-step, etc. The direct approach can be more accurate than the

iterated approach in the presence of model misspecification and does not require modeling

the behavior of the explanatory variables, thus making univariate modelling suffi cient. To

be clear, the model we develop isn’t literally a direct multi-step model, but it is clearly in

the spirit of such a forecasting specification.

Building on this past work, we develop a new Bayesian Mixed Frequency (BMF) model
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with Stochastic Volatility (SV) for point and density nowcasting. In particular, we produce

current-quarter forecasts of GDP growth with a (possibly large) range of available within-

the-quarter monthly observations of economic indicators, such as employment and industrial

production, and financial indicators, such as stock prices and interest rates. Each time

series of monthly indicators is transformed into three quarterly time series, each containing

observations for, respectively, the first, second or third month of the quarter. Hence, there

can be missing observations at the end of some of these three time series, depending on the

specific month of the quarter we are in. We then include in the model only the constructed

quarterly series without missing observations at the moment in time the forecast is formed.

This approach, which is in the spirit of direct multi-step forecasting, addresses the ragged

edge of the data.

We use Bayesian methods to estimate the resulting model, which expands in size as more

monthly data on the quarter become available. Bayesian estimation facilitates providing

shrinkage on estimates of a model that can be quite large, conveniently generates predictive

densities, and readily allows for stochastic volatility.

We provide results on the accuracy of the resulting nowcasts of real-time GDP growth in

the U.S. from 1985 through 2011. While most prior nowcasting research has focused on the

accuracy of point forecasts of GDP growth, we consider both point and density forecasts. It

turns out that in terms of point forecasts our proposal improves significantly on AR models

and performs comparably to survey forecasts. In addition, it easily provides reliable density

forecasts, for which the stochastic volatility specification is quite useful.

To place our proposed approach within the broader nowcasting literature, it is helpful

to use the “partial model”(or single equation) methods and “full system”methods classifi-

cation used by Banbura, et al. (2013). The former type of approach involves specifications

focused on the low frequency variable, in which the high frequency explanatory variables

are not modeled. In the latter approach, the low and high frequency variables are jointly

modeled. Our proposed modeling approach falls in the partial models class.

Among partial model methods, bridge and MIDAS models are most commonly used.

Bridge models, considered in such studies as Baffi gi, Golinelli and Parigi (2004), Diron

(2008) and Bencivelli, Marcellino and Moretti (2012), relate the period t value of the quar-

terly variable of interest, such as GDP growth, to the period t quarterly average of key
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monthly indicators. The period t average of each monthly indicator is obtained with data

available within the quarter and forecasts for other months of the quarter (obtained typi-

cally from an autoregressive model for the monthly indicator). MIDAS-based models, de-

veloped in Ghysels, Santa-Clara and Valkanov (2004) for financial applications and applied

to macroeconomic forecasting by, e.g., Clements and Galvao (2008) and Guerin and Mar-

cellino (2013), relate the period t value of the quarterly variable of interest to a constrained

distributed lag of monthly or weekly or even daily data on the predictors of interest. The re-

sulting model is then estimated by non-linear least squares and used to forecast the variable

of interest from constrained distributed lags of the available data. Foroni, Marcellino and

Schumacher (2012) propose the use of unconstrained distributed lags of the high frequency

indicators, a specification labeled unrestricted MIDAS, or U-MIDAS.

Full system methods for nowcasting include factor models and mixed frequency VARs.

We refer to the surveys in Banbura et al. (2013) and Foroni, Ghysels and Marcellino (2013)

for details and references. Here we only mention a few studies closely related to our proposal.

These include: Aastveit et al. (2013), which, in contrast to most of the nowcasting literature,

focuses on density forecasts; Chiu, et al. (2011); Ghysels (2012); Schorfheide and Song (2013)

and McCracken and Sekhposyan (2012), both of which develop mixed frequency Bayesian

VARs; and Marcellino, Porqueddu and Venditti (2012), which introduces a small scale factor

model that allows for stochastic volatility in the common and idiosyncratic components, and

provides density forecasts.

Relative to the existing partial model and full system approaches, the innovations in

our approach include the use of Bayesian shrinkage, the allowance for time variation in

coeffi cients, and the inclusion of stochastic volatility. Bayesian shrinkage often improves the

accuracy of forecasts from time series models, and it permits us to include a potentially

large set of indicators, which some evidence (e.g., De Mol, Giannone, and Reichlin (2008))

suggests should permit our model to achieve forecast accuracy comparable to factor models

(full system methods). The use of direct-type estimation means we do not need to model

explicitly the conditioning variables. Moreover, with the univariate forecasting equation of

our approach, we are easily able to allow for stochastic volatility, a feature important to the

accuracy of density forecasts, mostly neglected so far in the nowcasting literature (we are also

easily able to allow time-varying regression coeffi cients). The ability to tractably include a
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large set of indicators and stochastic volatility in the model gives our approach an advantage

over other approaches in the partial model and full system classes. For example, with MIDAS

methods, it is computationally diffi cult to consider more than a few indicators, while with

factor model methods, it is computationally diffi cult to include stochastic volatility unless

only a small set of variables are used.

The paper is structured as follows. Because data choices and availability play into our

model specification choices, we first present the data in Section 2. Section 3 details our

model and estimation method, and Section 4 introduces competing nowcasts. We then

present results in Section 5. Finally, we provide some concluding remarks in section 6.

2 Data

We focus on current-quarter forecasting of real GDP (or GNP for some of the sample) in

real time. Quarterly real-time data on GDP or GNP are taken from the Federal Reserve

Bank of Philadelphia’s Real-Time Data Set for Macroeconomists (RTDSM). For simplicity,

hereafter “GDP”refers to the output series, even though the measures are based on GNP

and a fixed weight deflator for much of the sample.

To forecast GDP, we consider 12 monthly indicators broadly informative about economic

and financial development, selected with some eye to timeliness: payroll employment, in-

dustrial production, real retail sales (nominal deflated by the CPI), housing starts, the ISM

index (overall) for manufacturing, the ISM index for supplier delivery times, the ISM in-

dex for orders, average weekly hours of production and supervisory workers, new claims

for unemployment insurance, stock prices as measured by the S&P 500 index, the 10-year

Treasury bond yield, and the 3-month Treasury bill rate.

In selecting the set of indicators, we did not engage in a broad search for best indicators

or endeavor to make comparisons of these indicators to others found to work well in some

studies. Of course, there are a range of others that could be worth considering. For example,

if one were producing forecasts in the middle of the month (rather than early in the month

as we do), the Federal Reserve Bank of Philadelphia’s business survey would be worth

considering (as in such studies as Giannone, Reichlin, and Small (2008)). Moreover, in

future research, it might also be worth considering indicators reported at a weekly or daily

frequency. While our method can easily handle these higher frequencies, we focus our
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application on monthly indicators, in light of the finding by Banbura, et al. (2013) that

higher frequency information does not seem to be especially useful for nowcasting U.S.

GDP growth (except perhaps in a continuous monitoring context).

Of the variables we do use, for those subject to significant revisions – payroll em-

ployment, industrial production, retail sales, and housing starts – we use real-time data,

obtained from the RTDSM (employment, industrial production, and housing starts) or the

Federal Reserve Bank of St. Louis’ALFRED database (retail sales). For the CPI, we use

the 1967-base year CPI available from the BLS rather than a real-time series; Kozicki and

Hoffman (2004) show that the 1967 base year series is very similar to real-time CPI inflation.

For the other variables, subject to either small revisions or no revision, we simply use the

currently available time series, obtained from the Federal Reserve Board’s FAME database.

The full forecast evaluation period runs from 1985:Q1 through 2011:Q3 (using period

t to refer to a forecast for period t), which involves real-time data vintages from January

1985 through March 2012. For each forecast origin t starting in the first month of 1985:Q1,

we use the real-time data vintage t to estimate the forecast models and construct forecasts

of GDP growth in the quarter. In forming the dataset used to estimate the forecasting

models at each point in time, we use the monthly vintages of (quarterly) GDP available

from the RTDSM, taking care to make sure the GDP time series used in the regression is

the one available at the time the forecast is being formed. The starting point of the model

estimation sample is always 1970:Q2, the soonest possible given data availability and lags

allowed in models.

In light of the potential for the large surprises of the recent sharp recession to alter

results, we also report results for a sample ending in 2008:Q2, before the recession became

dramatic.

Throughout the analysis, we will focus on current-quarter forecasts (corresponding to 1-

step ahead forecasts for most of our models). Our method can easily be extended to longer

forecast horizons, and we have generated results for horizons of 2 and 4 quarters ahead,

but we found very little evidence of predictability at these longer horizons, in line with the

nowcasting literature.

As discussed in such sources as Croushore (2006), Romer and Romer (2000), and Sims

(2002), evaluating the accuracy of real-time forecasts requires a diffi cult decision on what
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to take as the actual data in calculating forecast errors. The GDP data available today

for, say, 1985, represent the best available estimates of output in 1985. However, output

as defined and measured today is quite different from output as defined and measured in

1970. For example, today we have available chain-weighted GDP; in the 1980s, output was

measured with fixed-weight GNP. Forecasters in 1985 could not have foreseen such changes

and the potential impact on measured output. Accordingly, we follow studies such as Clark

(2011), Faust and Wright (2009), and Romer and Romer (2000) and use the second available

estimates in the quarterly vintages of the RTDSM of GDP/GNP as actuals in evaluating

forecast accuracy. We have also computed results using the first estimate of GDP and

obtained qualitatively very similar results.

3 The Bayesian Mixed Frequency (BMF) Model with Sto-

chastic Volatility (SV)

This section details our proposed nowcasting models. To help the discussion flow, we first

specify the general model forms in section 3.1 and then in section 3.2 detail the sets of

indicators in the model. We conclude by presenting in sections 3.3 and 3.4 the priors and

algorithms used in estimation.

3.1 General model forms

Starting with our specification that treats the error variance of the model as constant over

time, we consider nowcasting the quarterly growth rate of GDP in month m of the current

quarter based on the regression:

yt = X ′m,tβm + vm,t, vm,t ∼ i.i.d.N(0, σ2m), (1)

where the vector Xm,t contains the available predictors at the time the forecast is formed,

t is measured in quarters, and m indicates a month within the quarter. As detailed below,

given a set of monthly indicators to be used, there is a different regressor set Xm,t (and

therefore model) for each month m within the quarter, reflecting data availability.

In the stochastic volatility case, our proposed forecasting model for month m within the
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quarter takes the form:

yt = X ′m,tβm + vm,t

vm,t = λ0.5m,tεm,t, εm,t ∼ i.i.d.N(0, 1) (2)

log(λm,t) = log(λm,t−1) + νm,t, νm,t ∼ i.i.d.N(0, φm).

Following the approach pioneered in Cogley and Sargent (2005) and Primiceri (2005), the log

of the conditional variance of the error term in equation (2) follows a random walk process

(in unreported results, we found that treating log volatility as an AR(1) process with a coef-

ficient of 0.9 slightly reduced forecast accuracy). In a vector autoregressive context, studies

such as Clark (2011), Carriero, Clark, and Marcellino (2012), and D’Agostino, Gambetti,

and Giannone (2013) have found that this type of stochastic volatility formulation improves

the accuracy of both point and density forecasts.

Conceptually, one of the merits of our approach is that the BMF models with constant

volatility or stochastic volatility can be easily extended to allow for time-varying parameters

(TVP) in the conditional mean, as detailed in Carriero et al. (2013). We do not report the

details in this paper since empirically TVP did not improve either point or density forecasts.

The specification of the regressor vector Xm,t in the BMF and BMF-SV models is partly

a function of the way we sample the monthly variables. For each monthly variable, we first

transform it at the monthly frequency as necessary to achieve stationarity. At the quarterly

frequency, for each monthly variable, we then define three different variables, by sampling

the monthly series separately for each month of the quarter.

Exactly what variables are included in Xm,t depends on when in the quarter the forecast

is formed. We consider four different timings for forecasting period t GDP growth: forecast-

ing at the end of the first week of month 1 of quarter t (m = 1), at the end of the first week

of month 2 of quarter t (m = 2), at the end of the first week of month 3 (m = 3), and at the

end of the first week of month 1 of quarter t+ 1 (m = 4). These points in time are chosen

to correspond to the usual timing of the publication of employment data: employment data

for month s are normally published at the end of the first week of month s+ 1.

At each of the four forecast origins we consider for each quarter t, the regressor set Xm,t

is specified to include the subset of variables available for t (details are given in the next

subsection). At these points in time, the availability of other indicators also varies. As a
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consequence, the model specification changes in each month of the quarter, reflecting and

accommodating the ragged edge of the data. It is in this sense that our proposed approach

is very much in the spirit of direct multi-step forecasting. Under a direct approach, for

forecasting some variable in the future as of period t, one puts on the right hand side of the

regression model the variables available in period t. Our model is similar in that we define

the set of explanatory variables at each moment in time to consist only of the variables for

which period t observations are available.

We should stress that this approach does not involve bridge methods. Bridge methods

require forecasting monthly observations of monthly variables for any months of quarter t for

which data are not yet available. We do not use such forecasts. Rather, we only put on the

right hand side of the regression model the actual monthly observations that are available

for the quarter, in the form of different quarterly variables associated with the different

months of the quarter. In this sense, what we do is similar to the blocking approach in the

engineering literature, see, e.g., Chen, et al. (2012).

3.2 Indicators used

We report below results for both “large” and “small” versions of the BMF and BMF-SV

models. The large version includes a broad set of 12 monthly indicators: payroll employment

(∆ log); industrial production (∆ log); real retail sales (∆ log); housing starts (log); the

ISM index (overall) for manufacturing; the ISM index for supplier delivery times; the ISM

index for orders; average weekly hours of production and supervisory workers (∆ log); new

claims for unemployment insurance; stock prices as measured by the S&P 500 index (∆ log);

the 10-year Treasury bond yield; and the 3-month Treasury bill rate. The small version

uses just the first five indicators of the 12-variable set, which might be considered primary

contemporaneous indicators of economic activity. In the results reported in this paper, we

only include in the model values of these variables for the current quarter t (the quarter

for which GDP growth is being forecast). However, our general approach easily allows

the use of values from previous quarters (while this makes the models even larger, Bayesian

shrinkage helps limit the effects of parameter estimation error on forecast accuracy). Indeed,

in Carriero et al. (2013) we also report results for models in which the period t−1 (previous

quarter) values of every variable is also included as a predictor.
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Both the large and small model specifications all include in Xm,t a constant and one lag

of GDP growth. In most cases, this means the models include GDP growth in period t− 1.

However, in the case of models for forecasting at the end of the first week of month 1 of

quarter t, the value of GDP growth in period t − 1 is not actually available in real time.

In this case, the model includes GDP growth in period t − 2. This is consistent with our

general direct multi-step specification of the forecasting models.

As noted above, depending on the month of the quarter the forecast is being formed,

exactly what variables are in the large and small BMF and BMF-SV models (that is, inXm,t)

varies. Table 1 details the model specifications (and variable timing) we use, based on the

usual publication schedules of the indicators. Consider, for example, the version of the model

used to forecast GDP growth as of month m = 2 of the quarter. In this case, reflecting data

availability, the small BMF and BMF-SV models include in Xm,t the following: a constant,

GDP growth in quarter t − 1, and employment growth and the ISM index in month 1 of

quarter t. As of month m = 3 of the quarter, with more data available, the small BMF and

BMF-SV models include in Xm,t the following: a constant, GDP growth in quarter t − 1,

employment growth and the ISM index in month 2 of quarter t, and employment growth,

the ISM, growth in industrial production, growth in retail sales, and log housing starts in

month 1 of quarter t.

Among these specifications, the largest empirical model we consider includes 34 explana-

tory variables in Xm,t (including up to three months of observations within the quarter for

12 different monthly indicators, a constant, and a lag of GDP – see Table 1 for the precise

list). While the “small”BMF model is relatively small, it is not small in an absolute sense:

depending on the month of the quarter, the model includes in Xm,t up to 14 regressors (in-

cluding up to three months of observations within the quarter for the 5 monthly indicators, a

constant, and a lag of GDP growth – see Table 1 for the precise list). With models of these

sizes, under simple OLS estimation, parameter estimation error would have large adverse

effects on forecast accuracy. Our Bayesian approach to estimation incorporates shrinkage

to help limit the effects of parameter estimation error on forecast accuracy. We ran some

checks with some of our basic models to verify the importance of this shrinkage to nowcast

accuracy. These checks showed that models without shrinkage yielded RMSEs 14 to 26

percent higher and average log scores 9 to 21 percent lower than the same models estimated
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with shrinkage (specifically, with the prior settings described below).

3.3 Priors

We estimate the models with constant volatility using a normal-diffuse prior. As detailed

in sources such as Kadiyala and Karlsson (1997), this prior combines a normal distribution

for the prior on the regression coeffi cients with a diffuse prior on the error variance of the

regression. For the models with stochastic volatility, we use independent priors for the

coeffi cients (normal distribution) and volatility components (details below). Since the form

of the prior is not dependent on m, in spelling out the prior we drop the index m from the

model parameters for notational simplicity.

In all cases, for the coeffi cient vector β, we use a prior distribution that is normal, with

mean 0 (for all coeffi cients) and variance that takes a diagonal, Minnesota-style form. The

prior variance is Minnesota style in the sense that shrinkage increases with the lag (with

the quarter, not with the month within the quarter), and in the sense that we impose more

shrinkage on the monthly predictors than on lags of GDP growth (for the small BMF model,

loosening up the cross-variable shrinkage didn’t improve results). The shrinkage is controlled

by three hyperparameters (in all cases, a smaller number means more shrinkage): λ1, which

controls the overall rate of shrinkage; λ2, which controls the rate of shrinkage on variables

relative to GDP; and λ3, which determines the rate of shrinkage associated with longer lags.

At each forecast origin, the prior standard deviation associated with the coeffi cient on

variable xi,j,t−l of Xm,t, where i denotes the indicator (employment, etc.), j denotes the

month within which the quarter at which the indicator has been sampled, and l denotes

the lag in quarters (while we only consider a lag of 1 in this paper, Carriero, et al. (2013)

include results for models with a lag of 2), is specified as follows:

sdi,j,t−l =
σGDP
σi,j

λ1λ2
lλ3

. (3)

For coeffi cients on lag l of GDP, the prior standard deviation is

sdl =
λ1
lλ3

. (4)

Finally, for the intercept, the prior is uninformative:

sdint = 1000σGDP . (5)
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In setting these components of the prior, for σGDP and σi,j we use standard deviations from

AR(4) models for GDP growth and xi,j,t estimated with the available sample of data.

In all of our results, the hyperparameters are set at values that may be considered very

common in Minnesota-type priors (see, e.g., Litterman (1986)): λ1 = 0.2, λ2 = 0.2, and

λ3 = 1. In Carriero, et al. (2013), we ran some limited checks (for BMF models with different

subsets of our 12 monthly indicators) to see what hyperparameter settings would be optimal

in a real-time RMSE-minimizing sense. To simplify the optimization, we focused on just λ2.

In effect, the parameter λ1 can be seen as pinning down the rate of shrinkage for the lags

of GDP growth in the model, while, given λ1, λ2 pins down the rate of shrinkage on the

coeffi cients of the monthly indicators. Specifically, after simply fixing λ1 at a conventional

value of 0.2, we specified a wide grid of values for λ2, and generated time series of forecasts

for each corresponding model estimate (for a limited set of models). We then looked at

choosing λ2 in pseudo-real time to minimize the RMSE of past forecasts, using 5- or 10-

year windows. For example, using a model with nine economic indicators and both current

quarter and past quarter values of the indicators in the model, at the first evaluation point,

in late 1989, the optimal λ2 was 0.2. As forecasting moved forward in time, the optimal

setting drifted up a bit and then down a bit, before ending the sample at values as high as 1.

For simplicity, in all of the results in the paper, we leave λ2 at 0.2 through all of our analysis.

It is possible that the more computationally intensive approach of optimizing shrinkage at

each forecast origin could improve forecast accuracy, but in a VAR context, Carriero, Clark,

and Marcellino (2014) find the payoff to optimization over fixed, conventional shrinkage to

be small.

Finally, in the prior for the volatility-related components of the model, our approach

is similar to that used in such studies as Clark (2011), Cogley and Sargent (2005), and

Primiceri (2005). For the prior on φ, we use a mean of 0.035 and 5 degrees of freedom. For

the period 0 value of volatility of each equation i, we use a prior of

µ
λ

= log λ̂0,OLS , Ωλ = 4. (6)

To obtain log λ̂0,OLS , we use a training sample of 40 observations preceding the estimation

sample to fit an AR(4) model to GDP growth.
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3.4 Estimation algorithms

The model with constant volatility is estimated with a Gibbs sampler, using the approach

for the Normal-diffuse prior and posterior detailed in such studies as Kadiyala and Karlsson

(1997). At any given forecast origin, estimation is quite fast, because the forecasting model

is a single equation.

The model with stochastic volatility is estimated with a Metropolis-within-Gibbs algo-

rithm, used in such studies as Clark (2011) and Carriero, Clark, and Marcellino (2012). The

posterior mean and variance of the coeffi cient vector are given by

µ̄β = Ω̄β

{
T∑
t=1

λ−1t Xm,tyt + Ω−1β µ
β

}
(7)

Ω̄−1β = Ω−1β +

T∑
t=1

λ−1t Xm,tX
′
m,t, (8)

where we again omit the m index from the parameters for notational simplicity.

In presenting our results, we focus on forecasts obtained by estimating the forecasting

models with a recursive scheme: the estimation sample expands as forecasting moves forward

in time. A rolling scheme, under which the size of the estimation sample remains fixed over

time but the first observation moves forward in time, is in general less effi cient but can be

more robust in the presence of changes in regression parameters and (for density forecasts)

error variances. Hence, for the BMF models with constant volatility we also report results

based on a rolling estimation scheme. However, as we will show below, rolling window

estimation of the model is not suffi cient to get point and density forecasts that are as good

as those obtained with the (recursive) BMF-SV specification (with a gap that is particularly

large for density forecasts).

In all cases, we obtain forecast distributions by sampling as appropriate from the pos-

terior distribution. For example, in the case of the BMF-SV model, for each set of draws

of parameters, we: (1) simulate volatility for the quarter being forecast using the random

walk structure of log volatility; (2) draw shocks to the variable with variance equal to the

draw of volatility; and (3) use the structure of the model to obtain a draw of the future

value (i.e., forecast) of the variable. We then form point forecasts as means of the draws of

simulated forecasts and density forecasts from the simulated distribution of forecasts. Con-

ditional on the model, the posterior distribution reflects all sources of uncertainty (latent
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states, parameters, and shocks over forecast interval).

4 Competing Nowcasts

We compare our BMF and BMF-SV nowcasts with those generated from AR models and

with survey-based forecasts (which pool many predictions, based on timely information).

These are typically tough benchmarks in forecast competitions. The results in Carriero, et

al. (2013) also indicate that MIDAS and U-MIDAS specifications can also produce relatively

good nowcasts of GDP growth. However, these models are primarily designed for use with

small sets of indicators and point forecasts; using large sets of indicators and allowing

stochastic volatility to obtain reliable density forecasts is relatively diffi cult. As a result, we

abstract from MIDAS and U-MIDAS forecasts in the comparison.

4.1 AR models

In our forecast evaluation, in light of evidence in other studies of the diffi culty of beating

simple AR models for GDP growth, we include forecasts from AR(2) models. The models

take the same basic forms given in (1) and (2), with Xm,t defined to include just a constant

and two lags of GDP growth. In keeping with our real-time setup, we generate four different

AR-based forecasts of GDP growth in each quarter t, based on the data available in real

time as of the end of the first week of month 1 of quarter t, at the end of the first week of

month 2 of quarter t, at the end of the first week of month 3, and at the end of the first

week of month 1 of quarter t + 1. The models based on month 2, month 3, and month

1 of quarter t + 1 are all conventional AR(2) specifications relating GDP in quarter t to

GDP in quarters t− 1 and t− 2. For a given quarter, these model estimates and forecasts

differ only in that the GDP data available for estimation and forecasting will differ across

the months/data vintages. However, the specification of the model based on month 1 of

quarter t differs, because GDP growth for period t− 1 is not yet available. In this case, the

model takes a direct multi-step form relating GDP in quarter t to GDP in quarters t − 2

and t − 3, and the forecast horizon is in effect 2 quarters, not 1 quarter. In all cases, in

light of prior evidence of the success of AR models estimated by least squares, we estimate

the AR models with extremely loose priors, so that our Bayesian estimates based on the

normal-diffuse prior effectively correspond to least squares estimates.
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4.2 Surveys

We also consider GDP growth nowcasts based on the Survey of Professional Forecasters

(SPF), available quarterly, and the Blue Chip Consensus, available on a monthly basis,

since they are closely monitored by decision makers and typically perform quite well. The

forecasts from the nowcasting models, Blue Chip, and the SPF reflect information sets

that, in terms of timing, should be similar. In particular, the Blue Chip (BC) survey is

conducted a few days before publication on the 10th of each month. So it should usually be

the case that Blue Chip respondents have available the same information each nowcasting

model uses. For example, for month 2 of quarter t, we define the model to use information

normally available at the end of the first week of the month, which will include employment

and the ISM for month 1 of the quarter. At the time of the Blue Chip survey, that same

information would normally be available to participating forecasters. In the case of the SPF

forecast, the mid-quarter timing of the survey means that the SPF forecast should only be

comparable to the Blue Chip and model forecasts made in month 2 of the quarter (while

most comparable, the SPF forecast should normally reflect a little more information than

would be available to Blue Chip or the models).

5 Results

This section presents results on the accuracy of point and density forecasts from our proposed

BMF and BMF-SV methods relative to the accuracy of forecasts from ARmodels, the Survey

of Professional Forecasters (SPF), and Blue Chip. For the SPF and Blue Chip forecasts, our

comparisons are limited to point forecasts. The section first describes the metrics used and

then provides the results. As noted in Section 2, we present results for both a full sample

of 1985:Q1-2011:Q3 and a pre-crisis sample of 1985:Q1-2008:Q2.

5.1 Metrics

To assess the accuracy of point forecasts, we use RMSEs. To facilitate presentation, we

report RMSEs for each nowcasting model, Blue Chip, and SPF relative to the AR model

with constant volatility. To provide a rough gauge of whether the differences in RMSEs are

statistically significantly, we use the Diebold and Mariano (1995)—West (1996) t-statistic for
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equal MSE, applied to the forecast of each model relative to the benchmark.

For comparing our proposed BMF and BMF-SV forecasts to AR model forecasts, the

overlap between each alternative model and the benchmark could in principle complicate

inference. Our models of interest do not strictly nest the AR models, because the AR

models include 2 lags of GDP growth while the nowcasting models include just 1 lag of

GDP growth. But it is possible that the models overlap, in the sense that the true model

could be an AR(1) specification. However, since forecast performance suggests it is unlikely

that the AR model and nowcasting models overlap, we proceed to treat them as being non-

nested. The results in West (1996) imply that we can test equal accuracy of point forecasts

from non-nested models by computing a simple t-test for equal MSE, as we do. To capture

some low-order serial correlation, we compute the t-statistics with a heteroskedasticity and

auto-correlation consistent (HAC) variance, using a rectangular kernel and bandwidth of 1

and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997).

To assess the accuracy of density forecasts, we use log predictive density scores, motivated

and described in such sources as Geweke and Amisano (2010). At each forecast origin, we

compute the log predictive score using the real-time outcome and the probability density

of the forecast. For all models, we compute the density using an empirical estimate of the

forecast density based on 5000 draws of forecasts, a non-parametric density estimator, and a

Gaussian kernel. To facilitate model comparisons, we report average log scores for our BMF

and BMF-SV models relative to a benchmark AR model with stochastic volatility (AR-SV).

To provide a rough gauge of the statistical significance of differences in average log scores,

we use the Amisano and Giacomini (2007) t-test of equal means, applied to the log score

for each model relative to the AR-SV model. We view the tests as a rough gauge because,

for forecasts from estimated models, the asymptotic validity of the Amisano and Giacomini

(2007) test requires that, as forecasting moves forward in time, the models be estimated with

a rolling, rather than expanding, sample of data. To allow for the potential of some serial

correlation in score differences, we compute the t-statistics with a HAC variance estimate

obtained with a rectangular kernel and bandwidth of 1.

As further checks on density forecast calibration, we also provide results on the accu-

racy of interval forecasts and selected results for probability integral transforms (PITs).

Motivated in part by central bank interest in forecast confidence intervals and fan charts,
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recent studies such as Giordani and Villani (2010) have used interval forecasts as a mea-

sure of forecast accuracy for macroeconomic density forecasts. We compute results for 70

percent interval forecasts, defined as the frequency with which real-time outcomes for GDP

growth fall inside 70 percent highest posterior density intervals estimated in real time for

each model. To provide a rough gauge of statistical significance, we include p-values for

the null of correct coverage (empirical = nominal rate of 70 percent), based on t-statistics

computed with a HAC variance estimate obtained with a rectangular kernel and bandwidth

of 1. The p-values provide only a rough gauge of significance in the sense that the theory un-

derlying Christofferson’s (1998) test results abstracts from possible effects of forecast model

estimation – that is, parameter estimation error.

The probability integral transform (PIT) emphasized by Diebold, Tay, and Gunther

(1998) provides a more general indicator of the accuracy of density intervals than does an

interval forecast coverage rate. For an illustrative set of models, we provide PIT histograms,

obtained as decile counts of PIT transforms. For optimal density forecasts at the 1-step

horizon, the PIT series would be independent uniform (0,1) random variables. Accordingly,

the histograms would be flat. To provide some measure of the importance of departures from

the iid uniform distribution, we include in the histograms 90% intervals estimated under

the binomial distribution (following Diebold, Tay, and Gunther (1998)). These intervals are

intended to be only a rough guide to significance of departures from uniformity; more formal

testing would require a joint test (for all histogram bins) and addressing the possible effects

of model parameter estimation on the large-sample distributions of PITs.

5.2 Point forecasts

To assess the accuracy of point forecasts, Table 2 provides RMSE comparisons of our pro-

posed BMF and BMF-SV nowcasting models, Blue Chip, and the SPF to forecasts from

the AR model. To facilitate comparisons, the first row of each table provides the RMSE

of the AR model forecast (as noted above, the RMSEs of the AR model can change across

months of the quarter, due to a change in the model specification from the first month of

the quarter to the second and to GDP data revisions from month to month). The remaining

rows provide the ratio of each forecast’s RMSE relative to the AR model’s RMSE. A number

less than 1 means a given forecast is more accurate than the AR model. The numbers in
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parentheses are the p-values of two-sided t-statistics for equal MSE. The two panels of the

table refer to the periods 1985:Q1-2011Q3 and 1985:Q1-2008Q2.

We can draw six main conclusions from the RMSE results in Table 2. First, as might be

expected, the accuracy of forecasts from the BMF and BMF-SV models improves as more

data on the quarter becomes available, and we move from month 1 to 2, 2 to 3, and 3 to

month 1 of the next quarter. The gains look a little bigger with the move from month 2 to

month 3 than from month 3 to month 1 of the next quarter. As a consequence, the accuracy

of the nowcasting models relative to the AR baseline increases with the addition of more

information on the quarter. For both the small and large BMF and BMF-SV models, the

RMSE gain in the full sample results rises from about 7 percent in month 1 to 18 percent

in month 3 and 23-25 percent in month 1 of the next quarter. Somewhat surprisingly, the

Diebold-Mariano-West test doesn’t often imply the gains to be statistically significant in the

full sample, but it does imply more significance in the sample that ends before the depths

of the crisis.

Second, in the sample that ends in mid-2008 and thereby avoids the huge forecast errors

of the severe recession, our BMF and BMF-SV nowcasting models are often as accurate as

or even a bit more accurate (although not significantly so) than Blue Chip, particularly in

months 2 and 3 of quarter t. However, from month 3 of quarter t to month 1 of quarter

t+ 1, the Blue Chip forecasts improve in accuracy more so than do the model forecasts. As

a result, in month 1 of quarter t+ 1, the nowcasting models are generally less accurate than

Blue Chip, although not dramatically so.

To shed some further light on the performance of the nowcasting models and Blue Chip

over time, Figure 1 compares actual quarterly GDP growth (annualized) to point forecasts

from Blue Chip and our large BMF-SV nowcasting model. The chart makes clear the

improvement in accuracy that occurs with the addition of more data on the quarter –

improvement that seems most noticeable around recessions (1990-91, 2001, 2007-2009). It

also shows that, over some periods of time, the model is more accurate than Blue Chip,

while in others, Blue Chip is more accurate than the model. One period in which Blue Chip

fares better is the most recent recession, when Blue Chip did a better job of picking up and

projecting unprecedented declines in GDP growth.

Accordingly, the third main conclusion from the RMSE results is that, in the full sample,
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the nowcasting models are somewhat less accurate than Blue Chip, seemingly due in part to

relative performance in the depths of the crisis, though the differences are not statistically

significant. The challenge of beating a survey forecast with good nowcasting models is also

evident in such studies as Banbura, et al. (2013), who develop a mixed frequency factor

model-based forecast that is comparable to, but not quite as good, as SPF in forecasts for

1995-2010.

In light of the evidence in Chauvet and Potter (2013) that the advantage of some time

series models over an AR model baseline stems largely from periods of recession, not during

economic expansions (or normal times), we have checked the forecast performance of our

models during just economic expansions (dropping out observations falling during NBER re-

cessions). During expansions, our nowcasting models also forecast more accurately than the

AR baseline. That said, in terms of RMSEs, the advantages of the nowcasting models over

the AR baseline are somewhat smaller when recessions are excluded than in the full sample.

(The expansion versus recession distinction is smaller in density forecast accuracy than in

point forecast accuracy.) Overall, the advantages of our models over an AR baseline may be

less affected by the expansion versus recession distinction than the models of Chauvet and

Potter (2013) were affected because our models exploit more within-the-quarter indicators

of economic activity.

Returning to the primary take-aways from our results, a fourth conclusion to draw from

Table 2 is that including stochastic volatility in our proposed BMF nowcasting model doesn’t

have much payoff, or cost, in terms of the accuracy of point forecasts. Broadly, for a given

variable set included in a nowcasting model, BMF and BMF-SV yield similar RMSE ratios,

with the SV version sometimes a little better and other times a little worse.

Fifth, there are no major differences between the small (again, small is relative – even

the small model involves as many as 14 regressors) and large BMF models. The former are

slightly better when the sample ends in 2008, the latter over the full sample, suggesting that

more information became relevant during the crisis. We have also experimented (in Carriero,

et al. (2013)) with different subgroups of the indicators. Perhaps the most interesting finding

is that financial indicators, by themselves, do poorly in forecasting current-quarter GDP

growth. However, in line with the comparison of results across samples mentioned above,

including financial indicators with other indicators helps the models (a little) during the
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recent crisis.

Finally, rolling estimation of the BMF models with constant volatilities generates system-

atically higher RMSEs than recursive estimation of the same models. This finding suggests

that the effi ciency losses from using a smaller set of observations are larger than the gains

from getting partial robustness to possible breaks.

The main message that we can take from the point forecast evaluation is that overall

our BMF method is superior to AR model forecasts and comparable to survey forecasts,

though the surveys performed a bit better during the crisis. However, a major advantage

of our approach is that it also easily delivers density and interval forecasts, and, as we will

now see, in this context the stochastic volatility specification that we adopt becomes quite

relevant.

5.3 Density forecasts: average predictive scores

To assess the calibration of density forecasts, Table 3 provides average log score comparisons

of our BMF and BMF-SV nowcasting models, taking an AR model with stochastic volatility

as the benchmark (since previous research has shown stochastic volatility to improve density

accuracy of AR forecasts). To facilitate comparisons, the first row of each table provides

the average log score of the AR-SV forecast; remaining rows provide the score of each other

model forecast less the benchmark score. Entries greater than 0 mean a given density forecast

is more accurate (has a higher score) than the AR-SV baseline. The numbers in parentheses

are the p-values of two-sided t-statistics for tests of equality of average log scores. The two

panels of the table refer to the periods 1985:Q1-2011Q3 and 1985:Q1-2008Q2.

The main findings are as follows. First, including stochastic volatility in a model con-

siderably improves its average log score. This is true for both the AR model and our BMF

nowcasting models. Consider, for example, the small BMF model in month 2 of quarter t.

The constant volatility version of the model yields an average score that is 15.1% below the

AR-SV baseline, while the stochastic volatility version yields a score that is 8.5% above the

baseline.

To provide some intuition for the importance of allowing time-varying volatility, Figure

2 reports the estimates of stochastic volatility from an AR model and our large BMF-SV

nowcasting model, obtained from the full sample of data available in our last real-time data
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vintage. The volatility plotted is λ0.5m,t from equation (2), m = 1, 2, 3, corresponding to the

standard deviation of shocks to GDP growth in each model. For the AR-SV model, we

report just the posterior median of λ0.5m,t; for the BMF-SV model, we report the posterior

median and the 70 percent credible set. The charts show that time-variation in volatility

is considerable for an AR model, reflecting the Great Moderation and a rise in volatility

during the recent recession. Including within-quarter monthly indicators tends to dampens

the swings in volatility, more so as more months of data within the quarter become available.

However, even with the BMF-SV nowcasting model, there continue to be sizable movements

in volatility.

The second main finding is that the average log scores of the BMF and BMF-SV models

improve as more data becomes available for the quarter (i.e., scores are higher for models

with 2 months of data than 1 month of data, etc.). As a consequence, some of the nowcasting

models with 2 or 3 months of data on the quarter but constant volatility score better than

the AR-SV model. However, these gains are rarely statistically significant. Moreover, in the

pre-crisis sample, nowcasting models with constant volatilities have a harder time beating

the AR-SV benchmark.

Third, both BMF-SV models improve upon the average log score of the baseline AR-SV

specification. The gains increase as the nowcasting models get more months of data. In most

cases, the gains are statistically significantly, even in the case of month 1 of the quarter.

The large model is better for short horizons, the small for longer horizons. However, results

in Carriero, et al. (2013) for different subgroups of the indicators indicate that, financial

indicators, by themselves (as opposed to in conjunction with other indicators, as in our large

model), are not very helpful for density forecasting.

Finally, for density forecasting, rolling estimation of the BMF model with constant

volatility sometimes (not always) improves on the accuracy of the recursively generated

forecasts from the same model, but falls short of the recursively estimated model with

stochastic volatility. Consider forecasts from the small BMF model from month 3 of the

quarter. Relative to the AR-SV baseline, the recursively estimated BMF-SV model has a

score differential of 19.5 percent, compared to a score differential of 1.9 percent for the rolling

window version of the BMF forecast and -0.7 percent for the recursive version of the BMF

forecast. This finding suggests that, in alternative model formulations such as MIDAS, it
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would be necessary to incorporate stochastic volatility – which would be diffi cult to do

given the nonlinear regression problem involved in MIDAS – to achieve material gains in

density accuracy.

5.4 Interval forecasts

As another measure of density forecast accuracy, we consider interval forecasts. For all of

our econometric models, Table 4 provides coverage rates defined as the frequency with which

actual GDP growth falls within 70 percent forecast intervals, along with p-values for the test

that empirical coverage equals the 70 percent nominal rate. A number greater (less) than

70 percent means that a given model yields posterior density intervals that are, on average,

too wide (too narrow). The two panels of the table refer to the periods 1985:Q1-2011Q3

and 1985:Q1-2008Q2.

The coverage rates in the tables are striking. Recursive estimation of models with

constant volatilities in all cases yields coverage rates of about 90 percent, which are in all

cases significantly different from the nominal rate of 70 percent. Somewhat surprisingly,

given the patterns in the score results, coverage doesn’t show much tendency to get better

with the addition of more data across months of the quarter (it does get a little better,

but not much). This suggests the improvement in predictive scores that occurs with the

addition of months of data is due to improvement in the forecast mean.

However, estimating the same models (BMF with constant volatilities) with a rolling

window of observations yields better coverage rates, as much as 10 percentage points lower

than the rates obtained with recursively estimated models. But a simple rolling window

approach is not enough to yield correct coverage: coverage rates for the rolling scheme

versions of the BMF models are all (with one exception) statistically different from 70

percent.

Correct coverage is achieved by including stochastic volatility in our BMF specification.

Our models with stochastic volatility in all cases yield coverage rates close enough to 70

percent that they are not statistically different from 70 percent (at the 5% significance

level).

To further illustrate the importance of SV, in Figures 3 and 4 we report the real-time

70% interval forecasts from the large BMF model, without (Figure 3) and with SV (Figure
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4). Figure 3 confirms that coverage is pretty terrible for models with constant volatilities

(estimated recursively). As of month 1 of the quarter, for a model with constant volatility,

the 70 percent bands are so wide that actual outcomes hardly ever fall outside the bands.

With more months of data, the bands narrow some, but it remains the case that actual

outcomes rarely fall outside the bands. As Figure 4 indicates, the same model with stochastic

volatility yields much narrower bands, and therefore more outcomes that fall outside the 70

percent bands.

5.5 Probability integral transforms (PITs)

As noted above, PITs can be seen as a generalization of coverage rates (across different

rates). In the interest of brevity, we provide in Figures 5 and 6 PITs histograms for just the

large BMF and BMF-SV models (other models (including AR models) would yield a similar

conclusion about the role of stochastic volatility). If the forecasting models were properly

specified, the PITs would be uniformly distributed, yielding a completely flat histogram.

The PITs histograms yield results in line with the simple coverage comparison of the

previous subsection. As Figure 5 indicates, for models with constant volatilities, the PITs

have a distinct tent-type shape, which is consistent with forecast distributions that are too

dispersed. Adding more data doesn’t seem to materially improve the shape of PITs. This

finding provides further evidence that, in the case of models with constant volatilities, the

improvement in predictive scores that occurs with the addition of months of data is due to

improvement in the forecast mean, not the shape of the distribution.

Figure 6 shows that including stochastic volatility in the nowcasting model yields much

flatter PITs histograms. Hence, by the PITs measure, too, including stochastic volatility

materially improves the calibration of density forecasts.

6 Conclusions

We have developed a Bayesian Mixed Frequency method for producing current-quarter fore-

casts of GDP growth with a (possibly large) range of available within-the-quarter monthly

observations of economic indicators, such as employment and industrial production, and

financial indicators, such as stock prices and interest rates.

In light of existing evidence of time variation in the variances of shocks to GDP, we
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also consider versions of the model with stochastic volatility, while most of the existing

approaches assumed that the variance is constant. Similarly, models with time-varying re-

gression coeffi cients (with or without stochastic volatility), can be easily used but empirically

are less promising, at least in U.S. data (see Carriero et al. (2013)).

We use Bayesian methods to estimate the model, in order to facilitate providing shrinkage

on the (possibly large set of) model estimates and conveniently generate predictive densities.

Most prior nowcasting research has focused on the accuracy of point forecasts of GDP

growth. Instead, we consider both point and density forecasts.

Empirically, we provide results on the accuracy of nowcasts of real-time GDP growth

in the U.S. from 1985 through 2011. In terms of point forecasts, our proposal improves

significantly on AR models and performs comparably to survey forecasts, and yields further

evidence on the usefulness of intra-quarter information. Moreover, our approach provides

reliable density and interval forecasts, for which the stochastic volatility specification is quite

useful.

Our proposed approach could be extended in several directions, such as using higher

frequency information. It could be also applied to nowcast other relevant economic variables,

such as components of GDP, the inflation rate, or fiscal indicators. We leave these interesting

extensions for future research.
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Table 2. RMSEs relative to AR benchmark
(RMSE for AR, RMSE ratios for all others)

(p-values of equal MSEs in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t+ 1
1985:Q1-2011:Q3
AR 2.213 2.066 2.046 2.029
BC 0.831 (0.251) 0.845 (0.305) 0.757 (0.133) 0.622 (0.034)
SPF NA 0.803 (0.206) NA NA
AR-SV 0.999 (0.922) 1.007 (0.227) 1.007 (0.342) 1.010 (0.191)
small BMF 0.932 (0.167) 0.916 (0.102) 0.823 (0.120) 0.770 (0.091)
large BMF 0.932 (0.210) 0.872 (0.141) 0.800 (0.207) 0.770 (0.175)
small BMF, rolling 1.000 (0.989) 0.984 (0.120) 0.890 (0.064) 0.838 (0.053)
large BMF, rolling 1.002 (0.966) 0.952 (0.079) 0.903 (0.322) 0.850 (0.241)
small BMF-SV 0.936 (0.248) 0.906 (0.098) 0.815 (0.108) 0.749 (0.071)
large BMF-SV 0.925 (0.351) 0.879 (0.234) 0.816 (0.246) 0.771 (0.173)
1985:Q1-2008:Q2
AR 1.820 1.758 1.745 1.733
BC 0.963 (0.665) 0.983 (0.824) 0.881 (0.123) 0.737 (0.001)
SPF NA 0.930 (0.331) NA NA
AR-SV 1.002 (0.829) 1.005 (0.498) 1.010 (0.312) 1.010 (0.309)
small BMF 0.960 (0.050) 0.941 (0.015) 0.859 (0.018) 0.816 (0.005)
large BMF 0.979 (0.567) 0.914 (0.024) 0.892 (0.144) 0.864 (0.062)
small BMF, rolling 1.003 (0.859) 0.981 (0.196) 0.890 (0.027) 0.830 (0.004)
large BMF, rolling 0.992 (0.692) 0.950 (0.068) 0.920 (0.194) 0.867 (0.041)
small BMF-SV 0.955 (0.159) 0.926 (0.045) 0.852 (0.025) 0.799 (0.003)
large BMF-SV 1.000 (0.995) 0.941 (0.292) 0.914 (0.268) 0.870 (0.070)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The equal forecast accuracy test is described in
section 5.1. The reported RMSEs reflect GDP growth defined in annualized percentage terms.
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Table 3. Average log scores relative to AR-SV benchmark
(Score for AR-SV, differences in scores for all others)

(p-values of equal mean scores in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t+ 1
1985:Q1-2011:Q3
AR-SV -2.210 -2.144 -2.134 -2.123
AR -0.245 (0.000) -0.258 (0.000) -0.264 (0.000) -0.269 (0.000)
small BMF -0.177 (0.015) -0.151 (0.009) -0.007 (0.916) 0.045 (0.493)
large BMF -0.145 (0.031) -0.091 (0.186) 0.070 (0.416) 0.094 (0.251)
small BMF, rolling -0.185 (0.039) -0.119 (0.032) 0.019 (0.649) 0.081 (0.065)
large BMF, rolling -0.141 (0.020) -0.087 (0.113) 0.027 (0.610) 0.085 (0.208)
small BMF-SV 0.018 (0.558) 0.085 (0.010) 0.195 (0.002) 0.279 (0.000)
large BMF-SV 0.127 (0.002) 0.126 (0.017) 0.182 (0.065) 0.227 (0.020)
1985:Q1-2008:Q2
AR-SV -2.091 -2.049 -2.049 -2.047
AR -0.307 (0.000) -0.312 (0.000) -0.310 (0.000) -0.307 (0.000)
small BMF -0.251 (0.000) -0.208 (0.000) -0.055 (0.275) -0.002 (0.962)
large BMF -0.216 (0.000) -0.155 (0.002) 0.003 (0.959) 0.034 (0.535)
small BMF, rolling -0.125 (0.018) -0.108 (0.020) 0.012 (0.796) 0.082 (0.083)
large BMF, rolling -0.106 (0.036) -0.067 (0.141) 0.023 (0.629) 0.083 (0.087)
small BMF-SV 0.028 (0.229) 0.079 (0.022) 0.178 (0.002) 0.259 (0.000)
large BMF-SV 0.088 (0.018) 0.103 (0.029) 0.150 (0.024) 0.182 (0.019)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The average log score and the equal forecast
accuracy test are described in section 5.1. The reported scores reflect GDP growth defined in annualized percentage terms.
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Table 4. Coverage rates, nominal 70%
(p-values of correct coverage in parentheses)

month 1 month 2 month 3 month 1
forecast qrtr. t qrtr. t qrtr. t qrtr. t+ 1
1985:Q1-2011:Q3
AR 0.925 (0.000) 0.944 (0.000) 0.944 (0.000) 0.944 (0.000)
AR-SV 0.720 (0.653) 0.692 (0.851) 0.720 (0.653) 0.729 (0.502)
small BMF 0.925 (0.000) 0.935 (0.000) 0.925 (0.000) 0.916 (0.000)
large BMF 0.925 (0.000) 0.925 (0.000) 0.869 (0.000) 0.897 (0.000)
small BMF, rolling 0.822 (0.001) 0.841 (0.000) 0.813 (0.003) 0.813 (0.003)
large BMF, rolling 0.794 (0.016) 0.841 (0.000) 0.785 (0.033) 0.766 (0.106)
small BMF-SV 0.748 (0.259) 0.729 (0.502) 0.748 (0.259) 0.757 (0.171)
large BMF-SV 0.673 (0.552) 0.673 (0.552) 0.626 (0.116) 0.720 (0.653)
1985:Q1-2008:Q2
AR 0.947 (0.000) 0.957 (0.000) 0.968 (0.000) 0.957 (0.000)
AR-SV 0.723 (0.614) 0.691 (0.859) 0.723 (0.614) 0.745 (0.323)
small BMF 0.947 (0.000) 0.947 (0.000) 0.936 (0.000) 0.926 (0.000)
large BMF 0.947 (0.000) 0.947 (0.000) 0.872 (0.000) 0.894 (0.000)
small BMF, rolling 0.840 (0.000) 0.872 (0.000) 0.840 (0.000) 0.840 (0.000)
large BMF, rolling 0.830 (0.001) 0.862 (0.000) 0.809 (0.008) 0.798 (0.019)
small BMF-SV 0.777 (0.076) 0.745 (0.323) 0.745 (0.323) 0.755 (0.215)
large BMF-SV 0.670 (0.541) 0.702 (0.964) 0.638 (0.216) 0.713 (0.786)

Notes: See Table 1 and sections 3 and 4 for the definition of the models. The coverage rate and the test of correct coverage
are described in section 5.1.
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Point forecasts of GDP growth, 1985:Q1-2011:Q3
Model:  large BMF-SV
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Figure 1: Real-time point forecasts from Blue Chip and large BMF-SV model
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Stochastic volatility estimates, AR-SV versus large BMF-SV
(Posterior medians of standard deviation)
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Figure 2: Volatility (λ0.5
m,t of equation (3)) estimates from AR-SV and large BMF-SV models, last vintage

of data
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70% Interval forecasts of GDP growth, 1985:Q1-2011:Q3
Model:  large BMF

Forecast made in month 1 of quarter t
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Figure 3: Real-time interval forecasts from large BMF model
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70% Interval forecasts of GDP growth, 1985:Q1-2011:Q3
Model:  large BMF-SV
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Figure 4: Real-time interval forecasts from large BMF-SV model
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PITs for forecasts of GDP growth, 1985:Q1-2011:Q3
Model: large BMF
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Figure 5: PITs histograms, large BMF model
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PITs for forecasts of GDP growth, 1985:Q1-2011:Q3
Model: large BMF-SV
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Figure 6: PITs histograms, large BMF-SV model
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