# Exploring Differences in Household Debt across Euro Area Countries and the US

Dimitris Christelis CSEF, CFS and CEPAR

Michael Ehrmann Bank of Canada

**Dimitris Georgarakos** Goethe University Frankfurt and CFS

**ECB** Conference on Household Finance and Consumption

October 17/18, 2013

The views expressed here are those of the authors and not necessarily those of the ECB, the HFCN, the Eurosystem or the Bank of Canada

## Motivation

Household borrowing important for household well-being and financial stability

Sizeable differences in household borrowing across countries

Link differences to household characteristics / economic environment

# Background

#### **Decomposition methods based on counterfactuals**

**Oaxaca** (1973) and **Blinder** (1973): gender wage differentials; race differences in income/ wealth distributions; evolution of income and wealth inequality across time

#### Internationally comparable household survey data

**Blau and Kahn** (JPE, 1996): Decompose differences in male wage inequality between the US and nine OECD countries – key role of labour market conditions

**Bover** (ROIW, 2010): Decompose wealth differences between the US and Spain – key role of household structure (esp. at the lower end)

**Christelis, Georgarakos and Haliassos** (REStat, 2013): Decompose differences in asset holdings and mortgages among older (50+) households between the US and eleven European countries – key role for economic conditions

### Data

#### Household Finance and Consumption Survey (HFCS)

Countries: Germany, Netherlands, Belgium, Luxembourg, France, Austria, Italy, Spain, Portugal, Greece, Cyprus – 48,289 households

#### US Survey of Consumer Finances (SCF) – 6,482 households

**Use all five implicates** 

**PPP adjusted values:** 2005 US Dollars

**AMECO database:** Housing Price Indicator (harmonized)

# **Debt types**

**Collateralized** debts (mortgages, home equity loans, debts for other real estate)

**Non-collateralized** debts (credit card balances, installment loans, overdrafts, other loans)

Differences in **prevalence** 

Differences in conditional amounts outstanding







### Decomposition

Using the US as a base:

$$Y^{US} - Y^{EA} = \{X^{US}\beta^{US} - X^{EA}\beta^{US}\} + \{X^{EA}\beta^{US} - X^{EA}\beta^{EA}\}$$

**Covariate effects:** Differences in the configuration of household characteristics (X's) between two countries

**Coefficient effects:** Differences in  $\beta$ 's (i.e. the way the X's are 'valued' in the market) – differences 'economic environments'

Two stage decomposition:

- 1. **Aggregate decomposition**: 'covariate' vs. 'coefficient' effects
- 2. **Detailed decomposition**: contribution of each individual covariate (or corresponding β)

#### **Decomposition Methods**

Oaxaca (1973) and Blinder (1973) for the mean – wage gap decomposition DiNardo, Fortin, and Lemieux (1996): Reweighting method Machado and Mata (2005): Quantile regression-based method

Going beyond the mean is tricky (DFL, MM: path dependent)

**Firpo, Fortin and Lemieux** (2009): replace the dependent variable by the corresponding recentered influence function (**RIF**) of the distributional statistic of interest and perform a linear estimation

The conditional independence assumption (E(u|X)=0) usually invoked in Oaxaca-Blinder decompositions can be replaced by the weaker *ignorability* assumption to compute the aggregate decomposition (i.e. unobserved factors can correlate with X's as long as the correlation is the same in *US* and *EA*)

### **Covariates**

Age (age<40; 40-49; 50-59; 60 plus)

Marital status (couple; single; widowed; *divorced*)

Household size

Employment status (employed; self-employed; retired; other inactive; *unemployed*)

Education (college; high school; less than high school)

Income (*Q1*-Q4, re-assigned using the base country thresholds)

Financial wealth (*Q1*-Q4, re-assigned using the base country thresholds)

Real wealth (*Q1*-Q4, re-assigned using the base country thresholds)

Inheritance received

### **Non-Collateralized Debt - additional covariates:**

Last year's income **unexpectedly low** 

**Expect** next year's **income** to go up

Willingness to assume **more than average financial risk** 













### **Collateralized Debt – conditional amounts**

Additional covariates:

Year  $T_m$  that (the largest) outstanding mortgage was taken is known – merge with AMECO data

• Cumulative growth of housing price index (three years prior to  $T_m$ )

Duration of the (largest) mortgage

Time elapsed between t -  $T_m$ 



# **Summary and Conclusions**

**US**: highest prevalence of collateralized and non-collateralized debt

NL, LU, CY: highest (conditional) outstanding amounts of collateralized and non-collateralized debt

US market conditions more conducive to having collateralized/ noncollateralized debt

US market conditions more conducive to higher collateralized/ noncollateralized debt outstanding (exception: the **NL**) Significant role of:

Real estate for collateralized debt

**Education** for non-collateralized debt

Extensions:

Explore differences in household financial distress (eg. DSIRs, LTVs)

# **RIF Regressions**

Decomposing proportions is easier than decomposing quantiles

FFL recentered influence function (RIF) regressions. Run LP models (or logit/probit) for being below a given quantile, and divide by density (slope of cumulative) to locally invert.

Dependent variable is dummy 1(Y < QT) divided by density  $\rightarrow$  influence function for the quantile.

RIF approach works for other distributional measures (Gini, variance, etc.)

Chernozhukov et al. (2013): estimate "distributional regressions" (LP, logit or probit) for each value of Y (say at each percentile)

Invert back globally to recover counterfactual quantiles

In the case of quantiles, the RIF is:

$$\mathsf{RIF}(y; Q_{\tau}) = Q_{\tau} + \frac{\tau - 1\!\!1 \left\{ y \le Q_{\tau} \right\}}{f_Y(Q_{\tau})}$$

Similar RIF can be obtained for other distributional statistics such as a Gini coefficient

Unlike quantile regressions, an important property is that:

 $\mathsf{E}(\mathsf{RIF}(\mathsf{y},\mathsf{Q}_{\scriptscriptstyle \mathsf{T}})) = \mathsf{Q}_{\scriptscriptstyle \mathsf{T}}$ 

So if we have a regression model like

 $E[RIF(y,Q_T)|X] = X\gamma$ 

We can do a standard Oaxaca decomposition using the fact that

 $Q_{T} = E(RIF(y,Q_{T})) = E_{X}[E[RIF(y,Q_{T})|X]] = E[X]\gamma$