Efficiency of Central Bank Policy During the Crisis: Role of Expectations in Reinforcing Hoarding Behavior

Volha Audzei

CERGE-EI (Prague)

June 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

- Credit crunch and policy response by central banks
- Academic literature on policy analysis:

-frictionless transfer of funds between real and financial sector -crisis as a decline in creditors' balance sheet

- Liquidity hoarding
- Taylor and Williams (2009):

-counter-party risk was important factor in reducing availability of credit

• Change in investor sentiment

Motivation

Investor Sentiment

(日)

Motivation

Investor Sentiment

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Motivation

Investor Sentiment

Over the past three months, how have the following factors affected your bank's credit standards as applied to the approval of loans or credit lines to enterprises? <u>Factor=expectations regarding general economic</u> activity

イロト 不得 トイヨト イヨト

э

Model

Overview

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Model Overview

• Assumption 1:

Return on capital =
$$R_{kt} = rac{lpha rac{P_t Y_t}{K_t} + (1 - \delta) Q_t \zeta_t}{Q_{t-1}}$$

• Assumption 2:

$$\zeta_t = \rho_{\zeta} \zeta_{t-1} + \mu_t + \varepsilon_{\zeta,t} \tag{1}$$

 $\boldsymbol{\mu}_t$ is a persistent shock

$$\mu_t = \rho_\mu \mu_{t-1} + v_t \tag{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Model Beliefs

Model

Beliefs

Banks form their priors about ζ_{t+1} based on past data and then add the expert adjustment θ_t^h .

$$\zeta_t = \hat{\rho}_{\zeta,t} \zeta_{t-1} + \nu_t \tag{3}$$

When the new observation on ζ_t , arrives the priors about $\hat{\rho}_{\zeta,t}$ and σ_{ν}^2 are updated using Bayes' rule.

Adopting the adjustment procedure from (Bullard,2010) but for heterogeneous agents, we let expert opinion be formed as:

$$\theta_t^h = \rho_\theta \theta_{t-1}^h + (1 - \rho_\theta) \eta_t^h$$

$$\eta_t^h = \zeta_{t+1} + \varepsilon_{\eta,t}^h$$
(4)

The prior of the future value of capital quality is then updated by the bank as a weighted average of the signal and estimation from the past data:

$$E_t \hat{\zeta}_{t+1}^h = s E_t \left(\tilde{\zeta}_{t+1} | \zeta^t \right) + (1-s) \theta_t^h$$
(5)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model

Bank's problem

$$\max_{\gamma_t^h,\omega_t^h} E_t \Omega_{t,t+1} \left(\widehat{E}_t \left(\Pi_{t+1}^h \right) - \frac{\rho \widehat{Var_t}(\Pi_{t+1}^h)}{2} \right)$$
(6)

subject to budget constraint:

$$\omega_t^h \leq 1, \ |\gamma_t^h| \leq 1$$

and collateral constraint for a borrower on the interbank market:

$$B_t^{i,h} <= \frac{Collateral}{R_t^i} \times S_t^h \tag{7}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model

Bank's problem

$$\max_{\gamma_t^h,\omega_t^h} E_t \Omega_{t,t+1} \left(\widehat{E}_t \left(\Pi_{t+1}^h \right) - \frac{\rho \widehat{Var_t}(\Pi_{t+1}^h)}{2} \right)$$
(6)

subject to budget constraint:

$$\omega^h_t \leq$$
 1, $|\gamma^h_t| \leq$ 1

and collateral constraint for a borrower on the interbank market:

$$B_{t}^{i,h} <= \frac{Collateral}{R_{t}^{i}} \times S_{t}^{h}$$

$$Collateral_{t} = \frac{\alpha \frac{P_{t+1}Y_{t+1}}{K_{t+1}}}{Q_{t}}$$

$$(7)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model

Bank's problem

$$\max_{\gamma_t^h,\omega_t^h} E_t \Omega_{t,t+1} \left(\widehat{E}_t \left(\Pi_{t+1}^h \right) - \frac{\rho \widehat{Var_t}(\Pi_{t+1}^h)}{2} \right)$$
(6)

subject to budget constraint:

$$\omega^h_t \leq 1, \ |\gamma^h_t| \leq 1$$

and collateral constraint for a borrower on the interbank market:

$$B_{t}^{i,h} <= \frac{Collateral}{R_{t}^{i}} \times S_{t}^{h}$$

$$Collateral_{t} = \frac{\alpha \frac{P_{t+1}Y_{t+1}}{K_{t+1}}}{Q_{t}}$$

$$Collateral_{t} \times \omega_{t}^{h} \left(1 + \gamma_{t}^{h}\right) \ge \gamma_{t}^{h} R_{t+1}^{i}$$

$$Collateral_{t} \times \omega_{t}^{h} \left(1 + \gamma_{t}^{h}\right) \ge \gamma_{t}^{h} R_{t+1}^{i}$$

Results

Role of banks' sentiment

• credit market clears:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Results

Role of banks' sentiment

• credit market clears:

$$\sum_{\left(\mathcal{E}_{t}\hat{\kappa}_{k,t+1}^{h}\geq R_{t}^{N}\right)}\omega_{t}^{h}(1+\gamma_{t}^{h})\left(\Pi_{t}^{h}+D_{t}^{h}\right)=K_{t}$$
(8)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Results

Role of banks' sentiment

credit market clears:

$$\sum_{\left(\mathcal{E}_{t}\hat{R}_{k,t+1}^{h}\geq R_{t}^{N}\right)}\omega_{t}^{h}(1+\gamma_{t}^{h})\left(\Pi_{t}^{h}+D_{t}^{h}\right)=K_{t}$$
(8)

• interbank market clears

$$\sum_{\left(E_t\hat{R}^h_{k,t+1} \le R^i_t\right)} \gamma^h_t \left(\Pi^h_t + D^h_t\right) = \sum_{\left(E_t\hat{R}^h_{k,t+1} \ge R^i_t\right)} \gamma^h_t \left(\Pi^h_t + D^h_t\right) \quad (9)$$

Results

Role of banks' sentiment

• credit market clears:

$$\sum_{\left(\mathcal{E}_{t}\hat{\kappa}_{k,t+1}^{h}\geq R_{t}^{N}\right)}\omega_{t}^{h}(1+\gamma_{t}^{h})\left(\Pi_{t}^{h}+D_{t}^{h}\right)=K_{t}$$
(8)

• interbank market clears

$$\sum_{\left(E_t \hat{R}_{k,t+1}^h \le R_t^i\right)} \gamma_t^h \left(\Pi_t^h + D_t^h\right) = \sum_{\left(E_t \hat{R}_{k,t+1}^h \ge R_t^i\right)} \gamma_t^h \left(\Pi_t^h + D_t^h\right) \quad (9)$$

$$X_t = F\left(X_{t-1}, \bar{\zeta}, \sigma_{\zeta}, \sigma_R\right)$$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Results

Impulse Responses to Sentiment and Fundamental Shocks (0.01)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Results

Response to Crisis with and without Policy

ロト (四) (三) (三) (三) (○)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

- Investors' expectations generate long and large responses in model variables
- Banks hoard some liquidity provided by central bank due to their low sentiment
- Liquidity provision mitigates crisis slightly, but does not stop it, nor decreases its duration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Solution

• credit market clears:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution

 $\sum_{\left(\mathcal{E}_{t}\mathcal{R}_{k,t+1}^{h}\geq\mathcal{R}_{t}^{N}\right)}\omega_{t}^{h}(1+\gamma_{t}^{h})\left(\Pi_{t}^{h}+D_{t}^{h}\right)=K_{t}$ (10)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution

• credit market clears:

 $\sum_{\left(\mathcal{E}_{t}\hat{\mathcal{R}}_{k,t+1}^{h}\geq\mathcal{R}_{t}^{N}\right)}\omega_{t}^{h}(1+\gamma_{t}^{h})\left(\Pi_{t}^{h}+D_{t}^{h}\right)=\mathcal{K}_{t}$ (10)

$$\int_{R_t^N} \omega_t^h (1 + \gamma_t^h) \left(\Pi_t^h + D_t^h \right) f(x) \, dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Solution

• credit market clears:

 $\sum_{\left(\mathcal{E}_{t}\hat{\kappa}_{k,t+1}^{h}\geq\mathcal{R}_{t}^{N}\right)}\omega_{t}^{h}(1+\gamma_{t}^{h})\left(\Pi_{t}^{h}+D_{t}^{h}\right)=\mathcal{K}_{t}$ (10)

$$\int_{R_t^N} \omega_t^h (1 + \gamma_t^h) \left(\Pi_t^h + D_t^h \right) f(x) \, dx$$

• interbank market clears

$$\sum_{\left(E_t \hat{R}_{k,t+1}^h \leq R_t^N\right)} \left(\Pi_t^h + D_t^h\right) = \sum_{\left(E_t \hat{R}_{k,t+1}^h \geq R_t^N\right)} \gamma_t^h \left(\Pi_t^h + D_t^h\right) \quad (11)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Solution

• credit market clears:

 $\sum_{\left(\mathcal{E}_{t}\hat{\kappa}_{k,t+1}^{h}\geq\mathcal{R}_{t}^{N}\right)}\omega_{t}^{h}(1+\gamma_{t}^{h})\left(\Pi_{t}^{h}+D_{t}^{h}\right)=\mathcal{K}_{t}$ (10)

$$\int_{R_t^N} \omega_t^h (1 + \gamma_t^h) \left(\Pi_t^h + D_t^h \right) f(x) \, dx$$

• interbank market clears

$$\sum_{\substack{\left(E_{t}\hat{R}_{k,t+1}^{h}\leq R_{t}^{N}\right)}} \left(\Pi_{t}^{h}+D_{t}^{h}\right) = \sum_{\substack{\left(E_{t}\hat{R}_{k,t+1}^{h}\geq R_{t}^{N}\right)}} \gamma_{t}^{h} \left(\Pi_{t}^{h}+D_{t}^{h}\right) \quad (11)$$

$$\prod_{\substack{R_{t}^{N}\\f}\left(\Pi_{t}^{h}+D_{t}^{h}\right) f(x) \, dx = \int_{R_{t}^{N}} \gamma_{t}^{h} \left(\Pi_{t}^{h}+D_{t}^{h}\right) f(x) \, dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Solution:

with $x \sim U(a, b)$

$$\begin{array}{rcl} \mathbf{a} & = & \bar{\mathbf{x}} - \sqrt{3}\sigma_{\mathbf{x}}, \ \mathbf{b} = \sqrt{3}\sigma_{\mathbf{x}} + \bar{\mathbf{x}} \\ f(\mathbf{x}) & = & \frac{1}{2\sqrt{3}\sigma_{\mathbf{x}}} \end{array}$$